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 Abstract

Botrytis cinerea is a ubiquitous fungus causing gray mold, the main postharvest disease 
in fruit, which implies important economic losses in agriculture. With growing concern 
over health and environmental effects of pesticides, the search for eco-friendly alternatives 
is a clear priority. Plant extracts represent a rich source of biocompounds with attractive 
antimicrobial properties. In the last decade, Natural Deep Eutectic Solvents (NADES) has 
emerged as an auspicious green extraction media to achieve bioextract for a sustainable 
postharvest control. In the present study, a novel L. cuneifolia NADES-based bioextract was 
evaluated against B. cinerea. To this purpose, a NADES composed by lactic acid, glucose and 
water (LGH) was used as extracting agent and compared with traditional solvents in terms 
of antioxidant capacity and total phenolic content. Furthermore, the bioextract antifungal 
activity was tested in vitro and also in vivo on artificially inoculated grapes, in order to obtain 
preliminary data about the efficacy on gray mold development. The antimicrobial activity 
of the bioextract was assessed using agar diffusion method against B. cinerea, inhibition of 
92% was achieved with the bioextract at 2%. Notably, L. cuneifolia bioextract showed an 
excellent performance for gray mold control on grapes, supporting their potential as alter-
native green fungicide. 
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Resumen

Botrytis cinerea es un hongo ubicuo que ocasiona la podredumbre gris, una de las prin-
cipales enfermedades de fruta en poscosecha, siendo responsable de pérdidas económicas. 
Debido a la creciente preocupación por los efectos adversos del uso de pesticidas, la 
búsqueda de alternativas se presenta como una meta prioritaria. En este contexto, los 
extractos de plantas representan una rica fuente de biocompuestos con atractivas propie-
dades antimicrobianas. Recientemente, los solventes eutécticos naturales (NADES) se han 
propuesto como agentes extractantes sustentables de compuestos bioactivos a partir de 
plantas. En el presente estudio, se evaluó un bioextracto de L. cuneifolia basado en NADES 
hacia B. cinerea. Para este propósito, se usó un NADES compuesto por ácido láctico, glucosa 
y agua (LGH) como agente de extracción y se comparó con solventes tradicionales en 
términos de capacidad antioxidante y contenido fenólico total. Además, la actividad anti-
microbiana del bioextracto se evaluó in vitro e in vivo en uvas inoculadas artificialmente. 
A una concentración del 2% el bioextracto fue capaz de inhibir el crecimiento miceliar de 
B. cinerea en un 92%. Interesantemente, L. cuneifolia mostró un excelente rendimiento 
para el control de la podredumbre gris en uvas, demostrando su potencial como alternativa 
sustentable a los fungicidas sintéticos.

Palabras claves
solventes eutécticos naturales • biocompuestos • actividad antimicrobiana • 
plantas medicinales • control poscosecha 

Introduction

Botrytis cinerea (Pers. ex. Fr) is a ubiquitous fungus with a wide host range including 
vegetables, ornamental plants and fruits. This pathogen causes gray mold, the main post-
harvest disease in fruit, leading to important economic losses in agriculture (1, 2, 24). The 
chemical control of B. cinerea has been encumbered by the emergence of resistant strains. 
Moreover, the synthetic pesticides present high toxicity and low biodegradability. One of 
the greatest challenges that agriculture faces is the need of safer approaches for sustainable 
crop protection. In this sense, plant extracts with fungistatic or fungicidal activities have 
shown potential as effective alternatives for the control of several postharvest crop diseases 
(14, 16, 20, 38). 

Ethnobotanical studies support the use of several Argentinean autochthonous plants for 
antimicrobial purposes. Among these, the genus Larrea (Zygophyllaceae) is one of the most 
notable (3), being L. ameghinoi, L. cuneifolia, L. divaricata, and L. nitida the four species 
found in this country (32). L. cuneifolia extracts have been used as anti-inflammatory, anti-
rheumatic, dysphoretic, amenagogic, antimicrobial and antioxidant agents (36). These 
properties have been attributed to the presence of bioactive compounds, being the phenolic 
compounds one of the most relevant group (21). Interestingly, certain classes of phenolics, 
such as hydroxybenzoic and hydroxycinnamic acid derivatives, flavonoids, and tannins 
have been explored for a long time as postharvest alternative control (22).

Extraction of plant phenolic compounds is traditionally performed with solvents such 
as methanol, ethanol, hexane, chloroform and diethyl ether and water (5, 11, 34). Even 
though these extracts are obtained from natural sources, their preparation using toxic 
organic solvents has many disadvantages for human health and for the environment. In this 
sense, the development of eco-friendly solvents is identified as a clear priority to achieve a 
sustainable extraction processes (28).

 In the last decade, a new generation of solvents, called Natural Deep Eutectic Solvents 
(NADES), has been proposed as promising green extraction media (8, 17). NADES 
are mixtures consisting of natural metabolites that are naturally present in all types 
of cells and organisms such as sugars (glucose, sucrose, fructose, etc.); organic acids 
(lactic, malic, citric acids, etc.); urea and choline chloride (6, 9). NADES offer outstanding 
advantages including biodegradability, low toxicity, solute stabilization, sustainability and 
low cost (12, 27). It has to be pointed out that NADES are considered food grade solvents. 
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In the present study, a novel L. cuneifolia NADES-based bioextract was evaluated against 
B. cinerea. To this purpose, a NADES composed by lactic acid, glucose and water (LGH) was 
used as extracting agent and compared with traditional solvents in terms of antioxidant 
capacities and total phenolic contents. Furthermore, the bioextract antifungal activity was 
tested in vitro and also in vivo on artificially inoculated grapes, in order to obtain preliminary 
data about the efficacy on gray mold development. 

Materials and methods

Chemicals and equipments 
Compounds for LGH preparation including glucose anhydrous (≥ 99%), L (+) lactic acid 

(85-90%) were purchased from Biopack. Ultrapure water was obtained from a Milli-Q 
system (Millipore, Billerica, MA, USA) and Methanol (MeOH) was purchased from Baker 
(USA). 2,2'-azinobis(3-ethylbenzothiaziline-6- sulfonic acid (ABTS), 2,2'-diphenyl-1-
picrylhydrazyl (DPPH), Folin-Ciocalteu reagent and gallic acid 99% (Gal) were obtained 
from Sigma Aldrich (St. Louis, MO,USA). Sodium carbonate anhydrous (Na2CO3) and Potato 
Dextrose Agar media (PDA) were obtained from Biopack. Sulfur dioxide generating pads as 
a commercial fungicide postharvest were purchased from PROPEL (Mendoza, Argentina). 

Ultrasound Cleanson, Argentina, 200 W output power, 20 kHz frequency; Centrifuge 
Presvac DCS-16-RV and a Spectrophotometer Spectrum SP 2000 UV were used for 
extraction and determinations. 

NADES preparation
LGH was prepared using a method previously described by Dai et al. (2013). The two-

component mixture (lactic acid and dextrose; 5:1) with 15% of H2O (v/v) was placed in a 20 
mL amber glass vial. After, the mixture was heated in a magnetic stirrer with temperature 
control (Fisatom model 752A, Brasil) at 40°C for 60 min.

Plant material and extract preparation
L. cuneifolia plants were cultivated at a greenhouse and were identified by means of morpho-

logical, anatomical, and histochemical analyses. Leaves were harvested during flowering period 
and immediately frozen in liquid nitrogen, then lyophilized in darkness. Before the extraction, 
lyophilized material was grounded up to a fine powder with liquid nitrogen. 

Extraction was performed according to Espino et al. (2018). Lyophilized plant material 
and extraction solvent (LGH, methanol or water) were placed in a 15 mL centrifuge tube 
(ratio plant- solvent of 75 mg mL−1), homogenized by a vortex during 15 s and processed by 
ultrasound during 42 min at 40°C (±2°C). Then, the system was centrifuged for 30 min and 
the supernatant was filtered (0.45 µm). The extraction was performed in triplicate.

Total phenolic content
Total polyphenols were determined using Folin-Ciocalteu (FC) method described by 

Singleton and Rossi (1965) with modifications. For this determination, dilutions of the 
extracts were assessed at 5 % with LGH, MeOH or water. In a test tube, 50 µL of each extract 
dilution previously obtained, were mixed with the Folin-Ciocalteu reagent (200 μL) and, 
after 5 min, with an aqueous solution of Na2CO3 (1250 μL, 5 % w/v). Then, ultra-pure water 
was added to a final volume of 5000 µL. The mixture was incubated for 60 min in the dark, 
at room temperature, and the total phenol content was determined absortiometrically at 
750 nm. Gallic acid calibration curve was prepared in the concentration range of 0-1000 µg 
mL-1 (R2 = 0.9904) and results were expressed in µg of gallic acid per mL of extract. Each 
determination was performed in triplicate.

Antioxidant activity
DPPH* (2,2´-diphenyl-1-picrylhydrazyl) assay
The radical scavenging activity was measured in the extracts following the methodology 

described by Nuutila et al. (2003). The discoloration of the stable radical, 2,2'-diphenyl-
1-picrylhydrazyl was tested. For this determination, dilutions of the extracts were 



430

J. Boiteux et al.

Revista de la Facultad de Ciencias Agrarias

assessed at 2.5 % with LGH, MeOH or water. Then, 3.5 mL of DPPH* methanolic solution 
(0.045 mg mL-1) was rapidly mixed with 250 µL of each extract dilution. After 5 min, the 
absorbance was measured at 515 nm (AE). The decline in DPPH* concentration indicated 
the radical scavenging activity of the plant extracts. The initial absorbance of DPPH* 
solution was 1.375 (ADPPH). The experiment was carried out in triplicate. Gallic acid solution 
(1000 µg mL-1) was used as a reference (AREF) and radical scavenging activity of the extracts 
were calculated as inhibition percentage (I %) as follows (Eq. 1) :
 	

(1) 

ABTS (2,2´-azinobis(3-ethylbenzothiaziline-6- sulfonic acid) assay
Antioxidant activity was also measured following the method proposed by Re et al. 

(1999), using 2,2'-azinobis(3-ethylbenzothia-zoline-6-sulfonic acid) diammonium salt 
(ABTS). An ABTS ethanolic solution (2 mM) was added with potassium persulphate 
solution (2.45 mM) in order to produce radical cations (ABTS*). After 16 hours in dark, 
ABTS* solution was diluted with ethanol, to an absorbance of 0.70 (±0.02) at 734 nm 
(AABTS*). For this determination, dilutions of the extracts were assessed at 2.5% with LGH, 
MeOH or water. Each extract dilution (80 µL) was mixed with ABTS* ethanolic solution 
(3920 µL) and after 7 min the absorbance was measured (AE). All the determinations were 
carried out three times and the absorbance sample was considered. A gallic acid solution 
(1000 µg mL-1) was used as reference (AREF) and results were calculated according to the 
following formula (Eq. 2):

(2) 

Antimicrobial activity 
Microorganisms
 The isolates of B. cinerea were obtained from the microorganism's collection of the 

Cátedra de Fitopatología (Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 
Mendoza, Argentina).

Antimicrobial activity of L. cuneifolia bioextract by solid agar assay
 L. cuneifolia bioextract was filtered (0.2 µm) and added to sterile Potato Dextrose Agar 

(PDA) at different concentrations (0.05, 0.1, 0.25, 0.5, 1, 1.5, 2 % (v/v)) in Petri dishes 
(5.2 cm in diameter). A pathogen agar disk (diameter 4 mm), removed from an actively 
growing culture, was placed in the centre of each plate. A solvent control for the seven extract 
dilutions was included to confirm that LGH did not present antifungal effect. Three replicate 
plates for each concentration as well as control were prepared. The Petri plates were kept at 
25 ± 2 °C for 4 days. After the incubation period the test was considered concluded. In order to 
evaluate the mycelial growth inhibition; the mean colony area was determined. These mean 
growth values were calculated as the inhibition percentage of mycelial growth related to the 
control treatment according to the following equation (Eq. 3):

 % mycelial growth inhibition=((c-t)100)/c                                 (3)

 where:
c = control mean colony area
t = is treated mean colony area

Antimicrobial activity of L. cuneifolia bioextract in commercial grapes
Experiments were conducted with commercial grapes cv Red globe following the 

procedure proposed by Boiteux et al. (2015).
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Fruits free from injuries and infections were selected. Grape bunch with similar shape 
and size, containing each of them between 10-13 grapes were selected. B. cinerea was 
cultured on PDA petri plates for three weeks at 25°C. Then, the spore suspension was 
prepared in sterile water at a concentration of 1 × 106 conidia mL-1. In order to study the 
protective and curative activity of bioextract at 2 and 10% (v/v), grapes skin were sprayed 
with 3 mL of the bioextract 1 day before or after the pathogen inoculation. Two controls 
were performed, one using sterile water and the other with a postharvest commercial 
fungicide (SO2 generating pads). Grapes were put in closed plastic boxes to maintain a 
relative humidity of approximately 90 % and incubated for 7 days at 22°C. The experiment 
was performed in triplicate. The efficacy of the bioextract was calculated according to the 
following formula (Eq. 4): 

                                        % effectiveness= ((C−T)/ C)* 100                                              (4)
 
where:								            
C= (number grapes affected with gray mould/number total grapes inoculated for control 

with commercial fungicide)*100
T= (number grapes affected with grey mould/number total grapes inoculated for each 

treatment) *100									            

Statistical analysis
Statistical analysis was performed by analysis of variance (ANOVA), and means were 

compared using Tukey test. All the analyses were done in triplicate. The results were 
significant at p < 0.05 unless specified otherwise. Statistical analyses were carried out using 
Statgraphics Centurion XVI.II and GraphPad Prism 5.0 Software. 

Results and discussion 

Total phenolic content and antioxidant capacity of extracts
Folin-Ciocalteau assay is widely applied to estimate the total phenol content (TPC) 

in plant extracts. Thus, this technique was used to compare the TPC in the methanolic, 
aqueous and LGH extracts of L. cuneifolia. As can be seen in figure 1, water extract showed 
the lowest TPC for all the solvents under study. Interestingly, LGH bioextract presented a 
satisfactory performance when compared with methanolic extract.

Figure 1. Total phenolic content (A) and antioxidant capacity determined by DDPH* (B) 
and ABTS* (C) methods of L. cuneifolia extracts obtained with different solvents (MeOH, 

H2O and LGH). 
Figura 1. Contenido de polifenoles totales (A) y capacidad antioxidante determinada 

mediante los métodos de DDPH* (B) y ABTS* (C) de los extractos de L. cuneifolia 
obtenidos con diferentes solventes (MeOH, H2O and LGH). 
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Many studies have shown that plants rich in phenolic compounds also exhibit potent 
antioxidant activity. In general, the methods for determining the antioxidant capacity of 
plant extracts can deactivate radicals by two major mechanisms: assays based on the single 
electron transfer (SET) reaction and assays based on a hydrogen atom transfer (HAT). 
The DPPH test is SET-based method and ABTS used both HAT and SET mechanisms (18). 
Thus, in this work both assays were used to evaluate antioxidant activity of L. cuneifolia 
extracts (figure 1, page 431). The results demonstrated that for the two methods studied, 
LGH bioextract showed similar antioxidant activity than methanolic extract, whereas water 
extract presented the lowest activities. 

According to our results, LGH reveals a great potential as green extraction media to 
obtain bioextracts rich in bioactive compounds in comparison with traditional solvents. 
Previous studies demonstrated that this green solvent has outstanding extractability for 
both polar and weak polar phenolic compounds compared to conventional solvents (15). 
We have developed in our lab a HPLC-DAD methodology for the determination of phenolic 
compounds in Larrea (13). The results of sample analysis validated the TPC values reported 
in the present study.

Recently NADES have been introduced as environmentally benign solvents for the 
bioextract preparation with antimicrobial properties (30). Therefore, LGH-bioextract was 
selected for evaluating the biological activity against Botrytis cinerea.

Antifungal activity of L. cuneifolia bioextract by solid agar bioassay
In order to evaluate the antifungal activity of L. cuneifolia bioextract, different concen-

trations (0.05, 0.1, 0.25, 0.5, 1, 1.5 and 2% (v/v)) on the mycelial growth of B. cinerea were 
tested (photo 1). 

All the bioextract concentrations were able to inhibit the growth of B. cinerea in different 
percentages (figure 2, page 433). As can be seen, pathogen inhibition was observed even at 
low concentrations. The IC50 (concentration of the extract that inhibited 50 % the pathogen 
growth) was 0.67 % (0.5 g L-1). At the maximum concentration tested (1.5 g L-1), a 92 % of 
B. cinerea inhibition was achieved.

Photo 1. Mycelial growth of B. cinerea at different concentration of L. cuneifolia bioextract 
A: 0.05%; B: 0.1%; C: 0.25%; D: 0.5%; E: 1 %; F: 1.5%; G: 2% and H: control.

Foto 1. Crecimiento miceliar de B. cinerea a diferentes concentraciones del bioextracto de 
L. cuneifolia A: 0,05%; B: 0,1%; C: 0,25%; D: 0,5%; E: 1%; F: 1,5%; G: 2% y H: control.
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 Our results highlight that NADES-Larrea cuneifolia extracts shows outstanding activity 
against B. cinerea. Vast scientific knowledge supports the applications of the genus 
Larrea in antimicrobial assays. Alcoholic extracts of L. divaricata and L. cuneifolia showed 
considerably activity against filamentous fungi (Lenzites elegans, Schizophyllum commune, 
Pycnoporus sanguineus, Ganoderma applanatum, Fusarium oxysporum, Penicillium notatum, 
Aspergillus niger and Trichoderma spp) (29). Zampini et al. (2007) demonstrated the activity 
of Larrea ethanolic extracts against antibiotic-resistant bacteria. 

 Antimicrobial activity of our bioextract against B. cinerea mycelial growth was 
compared with plant extracts previously reported (table 1). NADES extract exhibits a much 
better pathogen inhibition efficiency than organic solvents extracts (7, 35). With regard 
to aqueous extracts, higher concentrations were required to achieve a similar B. cinerea 
inhibition to that obtained with the LGH extract (23). This could be explained by the great 
capacity of NADES to solubilize and stabilize bioactive compounds (10, 25, 37). 

Figure 2. Percentage of B. cinerea mycelial growth inhibition at different concentrations 
of L. cuneifolia bioextract. 

Figura 2. Porcentaje de inhibición del crecimiento miceliar de B. cinerea a diferentes 
concentraciones del bioextracto de L. cuneifolia. 
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 Table 1. Antimicrobial activity of plant extracts with different solvents against B. cinerea.
Tabla 1. Actividad antimicrobiana de extractos de plantas obtenidos con diferentes 

solventes hacia B. cinerea.

Plant material Solvent Concentration Mycelial growth 
inhibition References

Larrea cuneifolia LGH
1.5 g L-1 

(2 % v/v)
92% Present study

Fluorensia cernua water 4 g L-1 66% (11)
Zanthoxylum rhoifolium chloroform/ methanol 1 g L-1 70% (5)
Lippia origanoides ethanol 0.5 g L-1 44% (34)
Thymus vulgaris ethanol 0.5 g L-1 37%  (34)

Calendula officinalis
ethanol

cold water
hot water

2.26 % (v/v)
3.23 % (v/v)

10 % (v/v)

≈40%
100%
≈75%

(23)

Dolichos kilimandscharicus methanol 1 g L-1 60-80% (35)
Phytolacca dodecandra methanol 1 g L-1 40-50% (35)
Maerua subcordata methanol 1 g L-1 30-40% (35)
Ottonia martiana ethanol 1 g L-1 69% (7)
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NADES are recently introduced as environmentally benign solvents for the bioex-
tract preparation with antimicrobial properties. Rajan et al. (2015) studied the antibac-
terial activity of the extract of ginger rhizome (Zingiber officinale Roscoe), prepared with 
different Natural Deep Eutectic Solvents. NADES extracts exhibited prominent antimi-
crobial activity against Staphylococcus aureus, Streptococcus viridans, Salmonella typhi, 
Bacillus cereus, Klebseilla pneumonia, Vibreo cholera and Escherichia coli using paper disc 
diffusion methods. 

In order to assess the efficacy of L. cuneifolia bioextract on gray mold development, its 
antimicrobial activity was evaluated in commercial grapes.

Antimicrobial activity of L. cuneifolia bioextract in commercial grapes
The protective and curative activity of different concentrations of L. cuneifolia bioextract 

against B. cinerea were tested in grapes cv Red Globe (photo 2). Regarding that the extract 
at 2 % achieved the highest inhibition of the pathogen mycelial growth for in vitro assays, 
this concentration and 10% were chosen for in vivo tests. 

 Analyzing the obtained results (figure 3, page 435), a similar trend was observed on 
curative and protective application. Even though data showed no significant differences 
between the L. cuneifolia extracts at 10% and 2%. When comparing the two treatments, 
the protective assay presented the greatest effect against B. cinerea, showing an efficacy 
between 70 and 80 % in relation with chemical control. It has to be pointed out that the 
2% (1.5 g L-1) bioextract not only showed a high B. cinerea inhibition in vitro, but also an 
important effect for disease control in grapes.

Photo 2. In vivo antimicrobial assay in B. cinerea-inoculated grapes: (A) sterile water, (B) 
postharvest commercial fungicide (SO2 generator), (C) curative 2%, (D) curative 10%, (E) 

protective 2%, (F) protective 10%.
Foto 2. Racimos cv Red Globe inoculadas artificialmente con B. cinerea sometidos a 

diferentes tratamientos: (A) agua estéril, (B) fungicida comercial (generador de SO2), (C) 
tratamiento curativo 2%, (D) tratamiento curativo 10%, (E) tratamiento preventivo 2%, 

(F) tratamiento preventivo 10%.
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 Previous reports carried out on table grapes had demonstrated that plant extracts have 
remarkable potential as biopesticides; Kanetis et al. (2017) demonstrated that the acetonic 
extract of Salvia fruticosa was effective for the control of B. cinerea on this fruit. Also, the 
extracts of Borago officinalis, Orobanche crenata, Plantago coronopus, P. lanceolata, Sangui-
sorba minor, Silene vulgaris, Sonchus asper, Sonchus oleraceus, and Taraxacum officinale 
induced a significant reduction of grey mould disease (22).

Conclusions

This work highlights the ability of NADES as solubilisation vehicles for plant derived 
postharvest protection agents. LGH reveals a great potential as green extraction media 
to obtain bioextracts rich in total phenolic content and similar antioxidant activity when 
compared with traditional solvents. The bioextract obtained presented an effective antimi-
crobial activity against Botrytis cinerea. Notably, L. cuneifolia bioextract on grapes showed 
an excellent performance for gray mold control in protective assay, supporting their 
potential as alternative green fungicide. Further researches are needed for the applicability 
of this bioextract in commercial processes.
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