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Abstract

Bioplastics composed of renewable sources and antimicrobial components are 
desirable in food packaging. This study prepared bioplastic films with cassava starch 
and rosemary essential oil using a casting methodology. Film antibacterial activity, water 
vapour transmission (Wvt), mechanical resistance, and microstructure were measured 
after exposure to pathogenic bacteria such as Salmonella enterica, Escherichia coli, 
Staphylococcus aureus, and Bacillus cereus. Antibacterial activity was evidenced against the 
pathogens evaluated except for B. cereus. The films showed average values   of Wvt 3.6988 
(10-14 g/Pa s m), tensile strength 8.90 MPa, young modulus 1679.72 MPa, and elongation at 
break 4.33%. Film microstructure showed good adhesion to bioplastic components in the 
matrix. Bioplastics of cassava starch and rosemary oil constitute potential food packaging 
solutions mainly for fruits, egg-based products or chicken. 
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Resumen

Los bioplásticos elaborados a partir de fuentes renovables y componentes antimi-
crobianos son deseables en el empacado de alimentos. Por tanto, se prepararon láminas 
bioplásticas con almidón de yuca y aceite esencial de romero usando el método de vaciado 
en placa. Se midió la actividad antibacteriana, transmisión de vapor de agua (Tva), resis-
tencia mecánica y microestructura de láminas bioplásticas. Las láminas fueron expuestas 
a bacterias patógenas como Salmonella enterica, Escherichia coli, Staphylococcus aureus y 
Bacillus cereus. Se evidenció actividad antibacteriana para los patógenos evaluados excepto 
para B. cereus. Las láminas evidenciaron valores promedio de Tva 3,6988 (10-14 g/Pa s m), 
esfuerzo a tensión 8,90 MPa, módulo de young 1679,72 MPa y deformación a la rotura 
4,33%. Su microestructura evidenció buena adhesión entre los componentes de la matriz 
bioplástica. Estos resultados muestran el potencial de los bioplásticos de almidón de yuca 
y aceite esencial de romero para el empacado de alimentos, principalmente de frutas o 
productos elaborados con huevo o pollo. 

Palabras clave
polímeros • empaques • bacterias • vapor de agua

Introduction

The production of bioplastics from renewable sources is a field of research, 
development, and innovation of great interest worldwide (58). Bioplastics have increased 
from 2.4 million tons in 2021 to 7.5 million tons in 2023 (21). Applications include the 
packaging industry, agriculture/horticulture, consumer electronics, automobile, consumer 
goods, and household appliances. Package manufacturing, where rigid and flexible materials 
are required, is the most representative market segment (12, 23).

Bioplastics can be totally or partially obtained from natural sources (32). Fossil raw 
materials are generally not biodegradable. However, exceptions such as polycaprolactone 
can be used to make bioplastics. Polysaccharides, proteins, and fatty acids are renewable raw 
materials commonly used to manufacture bioplastics. Cellulose, starch, pectin, alginate, soy, 
wheat gluten, and gelatin are used alone or mixed with fossil polymers such as polyethylene 
or polypropylene (15, 46). Starch is a polysaccharide frequently used in bioplastics due to 
availability, costs, and biodegradable and renewable characteristics (58). Among bioplastics, 
starch-based bioplastics are the most widely traded (21). However, some disadvantages, 
mainly related to polarity, limit some applications (36, 58). Bioplastic food packaging must 
overcome the “polarity challenge” that implies high deterioration risks (48). 

Active compounds increase biopolymers functionality for active food packaging (25). 
Food packaging with antimicrobial components has a positive impact on shelf life of 
packaged products (43, 46). These components are generally compatible with the natural 
raw materials used to produce bioplastic. Many studies have incorporated essential oils 
and plant extracts in polymer matrices to obtain bioplastics (10, 22, 25, 29, 42, 52, 57). 
Nevertheless, very few studies measure antimicrobial effects of rosemary oil incorporated in 
bioplastic films on more than three strains of bacteria or fungi. In fact, the composition of the 
essential oil may vary according to the place of origin affecting both bioplastic antimicrobial 
and physicochemical properties. To the best of our knowledge, no study has simultaneously 
evaluated the influence against Gram-negative bacteria (E. coli and Salmonella sp.) and, 
Gram-positive bacteria (S. aureus and B. cereus). 

Bioplastic mechanical properties, stability against moisture and antimicrobial 
characteristics determine their applications. This study aimed to determine the antibacterial 
activity against E. coli, S. enterica, S. aureus, and B. cereus, physical-chemical and mechanical 
properties of a bioplastic film made with cassava starch and rosemary essential oil.
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Materials and methods

Materials 
Cassava starch (Manihot esculenta Crantz) was purchased from Tecnas S. A. 

(Cali, Colombia). Rosemary (Salvia rosmarinus) oil was purchased at the local market 
(Cali, Colombia). Food-grade glycerol was purchased from Merck (Burlington, MA, USA). 
All chemicals were reagent grade and purchased from Merck (Burlington, MA, USA). The 
American Type Culture Collection (ATCC) of the Universidad de San Buenaventura Cali 
(Colombia) provided bacteria. Two Gram-positive bacteria, Staphylococcus aureus ATCC 
25923, Bacillus cereus ATCC 15579 and two Gram-negative bacteria, Salmonella enterica 
ATCC 13314 and Escherichia coli ATCC 10798, were evaluated. This study was conducted at 
the University of San Buenaventura Cali, in Cali, Colombia.

Rosemary essential oil extraction
Rosemary leaves were placed in distilled water (mass/volume ratio 1/12). The essential 

oil was extracted in a hydrodistillation system for 4 hours at 100°C and stored refrigerated.

Film preparation 
Cassava starch (CS) films were produced by the casting method (47) from forming 

suspensions (FSs). The FSs were prepared by dissolving 3 g of CS, 120 mg of rosemary 
essential oil, 83 mg of tween-80, and 0.75 g of glycerol in 100 mL of distilled water with 
heating (75 ± 5°C) and magnetic stirring. The FSs were dehydrated by convective drying at 
40°C until obtaining films with 10% humidity, optimized formulation from a previous study 
(39) with a central composite design. The optimized formulation was validated with error 
values ranging from - 3.31 to 10.61%. 

Antibacterial properties
Film antimicrobial activity was evaluated against Gram-negative bacteria 

(E. coli and S. enterica) and Gram-positive bacteria (S. aureus and B. cereus) using the disc 
diffusion method (54).

Mueller-Hinton agar (Sigma-Aldrich) was used to inoculate the bacteria. Then, a foil 
disc was placed in the center of the Petri dishes, and incubated at 37 ± 2°C for 24 hours. 
A calibrator (Mitutoyo, Japan) was used to measure the halo around the disc, determining 
inhibition percentage with Equation 1:

(1)

Five repetitions were made for each bacteria. Chloramphenicol (Colmed, International) 
was used as a positive control at 100 ppn (parts-per notation).

Statistical Analysis
ANOVA and Fisher’s LSD determined significant differences among treatments. Minitab 

19 software was used to analyze variance with a significance level of 5%.

Rosemary essential oil
A Gas Chromatograph (AT 6890 Series Plus, Agilent Technologies, Palo Alto, 

California, USA) coupled to a mass selective detector (Agilent Technologies, MSD 5975 
Inert XL) determined the chemical composition of rosemary essential oil operated in the 
full radio frequency sweep. The column was DB-5MS (J & M Scientific, Folsom, CA, and USA) 
[5% -phenyl-poly (dimethylsiloxane), 60mm x 0.25mm x 0.25μm]. Injection was done in 
Split mode (30:1) with a volume of 2μL.
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Water vapour transmission
The water vapour transmission Wvt was measured gravimetrically following the ASTM 

E96-05 standard methodology (16). We used glass permeation cells filled with silica gel 
(0% RH). Films with a diameter of 80 mm were bonded with liquid silicone in the circular 
mouth of each cell. Cells were stored in airtight containers with a saturated sodium chloride 
solution (73 ± 2% RH) at 25°C. Weight variation in the permeation cell was plotted against 
time. Slopes were calculated by linear regression. The Wvt (g/Pa s m) was calculated by 
equation 2:

(2)

where:
WVTR = water vapour transmission rate, calculated as the ratio between the slope of the 
straight line (g/s) and the permeation cell area (m2)
P = saturation vapour pressure of water (Pa)
RH = relative humidity in the airtight container 
l = mean film thickness (m). Analyses were conducted in triplicate.

Mechanical properties
A texturometer (EZ-Test L, Shimadzu, Japan) equipped with Trapezium X software 

conducted the test following the ASTM D882-10 standard (55). The films were cut in a 
rectangular shape of 20 mm wide and 100 mm long and stored for a week at 50% RH. The 
initial gauge was 65 mm long and test speed was 50 mm/min, using a load cell of 500 N. 
Tensile strength Ts, young modulus Ym, and elongation at break Eb were measured. Tests 
were performed ten times and the average was reported.

Scanning electron microscopy 
Film surface morphology was analyzed at 20Kv scanning electron microscopy (SEM) 

(Jeol JSM-6490LV, USA) with backscattered electrons obtaining surface and cross-section 
images. Samples 5 mm wide and 5 mm long were coated with gold in a vacuum chamber 
(Denton Vacuum, Desk IV, USA). Images were captured at 500 and 2000 increases.

Results and discussion

Antibacterial properties
Inhibition percentages shown in table 1 indicate bioplastic films showed higher 

inhibition against E. coli, S. aureus than against S. enterica.

Different letters in the 
same column indicate 
significant differences 

(p<0.05). 
Letras diferentes en la 

misma columna indican 
diferencias significativas 

(p<0,05).  

Table 1. Antibacterial inhibition percentages of bioplastic films.
Tabla 1. Porcentaje de inihibición antibacteriana de las láminas bioplásticas.

Bacteria Inhibition (%)

E. coli 28.78 ± 0.45 c

S. enterica 18.48 ± 0.28 b

S. aureus 27.51 ± 0.75 c

B. cereus 0.00 ± 0.00 a

The antibacterial activity of rosemary essential oil depends on ketones and monoterpene 
hydrocarbons that affect cell membrane permeability (5). This oil has proven antibacterial 
effects against E. coli (5, 18, 27, 30, 31), Salmonella (2, 33), and S. aureus strains (5, 6, 18, 27). 
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As shown in table 1, page 129, B. Cereus was not inhibited, probably given to bacterial 
rapid mutation and adaptation to different media, reaching quick resistance against 
antimicrobial agents (14, 53). Unlike E. Coli, S. enterica, and S. aureus, B. cereus is a sporulated 
bacterium, a mechanism that reinforces cell wall protection via environmental isolation 
and prevention of inhibitory interactions (40). It also generates highly resistant biofilms 
hindering its elimination (19).

Table 2 shows how rosemary oil incorporated in the film is mainly composed of β-Mircene 
(27.8 g/100 g), Camphor (23.9 g/100 g), and 1.8-Cineol (16.2 g/100 g). β-Mircene is an 
antibacterial monoterpene against S. aureus, E. coli, Pseudomonas aeruginosa, and Proteus 
vulgaris (3). Camphor is a terpenoid that affects lipoproteins and lipopolysaccharides 
present in bacteria cell walls, particularly gram-negative ones, generating lysis and 
subsequent cell death (6, 59). The third main component, 1,8-Cineol (9), is an oxygenated 
monoterpene (26, 35) widely used as inhibitory agent of food pathogens (9, 37). Even 
though many compounds have antimicrobial capacity (3), microorganisms develop defence 
and resistance mechanisms such as biofilms, a conglomeration of different cells allowing 
group protection from external factors (38). However, 1.8-Cineol inhibits biofilm formation 
in S. aureus through inhibitory agents affecting cell wall (34).

Table 2. Rosemary oil composition.
Tabla 2. Composición del aceite de romero.

Compound Concentration 
(g/100 g)

Triciclene 0.2
α-Tujene 1.0
α-Pinene 4.5
Canfene 5.5

Sabinene 0.1
β-Pinene 4.6

β-Myrcene 27.8
α-Felandrene <0.1
α-Terpinene <0.1

p-Cimene 1.5
Limonene 2.1
1,8-Cyneol 16.2

trans-β-Ocimene 0.1
ϒ-Terpinene 0.3

cis-Sabinene Hydrate 0.3
Terpinolene 0.2

6,7-Epoxymyrcene 0.1
Linalool 0.6

trans-Sabinene Hydrate 0.2
Camphor 23.9
Borneol 0.8

C10H16O (M+ 152) 0.2
Terpinen-4-ol 0.7

α-Terpineol 1.1
Verbenone 0.3

Bornyl Acetate 3.4
α-Copaene 0.1

trans-β-Cariofilene 2.2
α-Humulene 0.7
ϒ-Muurolene 0.2
δ-Cadinene 0.2

Caryophyllene oxide 0.9
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Water vapour transmission
Table 3 shows an experimental average Wvt  of  3.6988 (10-14 g/Pa s m), lower than for 

other studies under similar manufacturing conditions. Considering that minimum Wvt values 
allow low vapour exchange between the food and the surrounding atmosphere, bioplastics 
for the food packaging industry should have low Wvt values for a longer shelf life (17).

Wvt values of 3.11 to 8.72 (10-11 g Pa s m) were reported in anchovy (Coccinia abyssinica) 
starch films with cellulose nanocrystals and rosemary essential oil (27); from 2.95 to 2.7 
(10-10 g/Pa s m) in films of polyvinyl alcohol, corn starch and cardanol oil (56); from 5.8 
to 11 (10-10 g/Pa s m) in cassava starch films with rosemary extract (47); 4.16 to 5.27 
(10-11 g/Pa s m) in modified cassava starch films (13); 5.8 to 12.5 (10-10 g/Pa s m) in 
cassava starch films with rosemary nanoparticles (20) and 3.9 to 8.2 (10-11 g/Pa s m) in 
biodegradable films of cassava starch with nanoclays (50). In the food industry, cellophane 
polymer derived from cellulose is used as wrapping film in the confectionery industry with 
a Wvt of 8.44 (10-11 g/Pa s m) (20). Considering conventional films, our bioplastic obtained 
good values. 

The Wvt values obtained are related to film composition. The starch/tween 80 ratio 
constitutes a relevant factor since when its concentration allows for a continuous network, 
this polysorbate acts as water vapour transmission barrier (7). The network keeps the 
surfactant molecules dispersed, promoting a balance between the hydrophobic and 
hydrophilic phases and reducing Wvt. An excessive concentration of tween 80 will enhance 
the plasticizer effect, increasing the free volume inside the bioplastic structure and increasing 
Wvt (8). In addition, when starch and glycerol proportions increase, Wvt values may as 
well increase. Both starch and glycerol behave as polar components stimulating OH bonds 
with water molecules. Instead, the interaction between starch and rosemary oil limits the 
amount of water absorbed by the film (27) with covalent bonds that reduce OH groups and 
consequently decrease Wvt  (49). The equilibrium among bioplastic components promoted 
low water values for food packaging.

Mechanical properties
Mechanical properties define bioplastic usage in food packaging. Tensile strengths 

and Young’s modulus relate to mechanical tensile strength, while elongation at break 
defines ductility.

Table 3 shows an average tensile strength of 8.9 MPa, and Young’s modulus of 1679.72 MPa, 
both higher than those reported in similar studies. Biofilms made from anchovy starch 
(Coccinia abyssinica) with cellulose nanocrystals and rosemary essential oil evidenced Ts 
values of 9.42 to 23.44 MPa (27). Bioplastic films made of modified starch with soybean oil 
oligomers reported Ts values of 3.35 MPa (58), while other ones made from cassava starch 
showed Ts values from 0.1 to 1.07 MPa and Ym values from 0.07 to 0.50 MPa (11). Films 
with essential oils had Ts values from 3 to 14 MPa (20), and bioplastic films of cassava starch 
with cinnamon essential oil showed Ts values ranging from 1.05 to 3.75 MPa (51). Plantain 
starch films had Ts values from 2.4 to 12.4 MPa and Ym values from 55.6 to 1482.2 MPa (41). 

Table 3. Physiochemical and mechanical characteristics of bioplastic films.
Tabla 3. Caracterización fisicoquímica y mecánica de las láminas bioplásticas.

Characteristic Average values

Thickness (mm) 0.079± 0.002

Wvt (10-14 g/Pa s m) 3.6988 ±  0.158

Ym (MPa) 1679.72 ± 17.295

Eb (%) 4.33 ± 0.152

Ts (MPa) 8.90 ± 0.199
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Bioplastic components define final mechanical properties while their concentration 
affects moisture gain. Starch is the major film component affecting mechanical resistance, 
forming hydrogen bridges with water and promoting adsorption. Water acts as a plasticizer 
agent, increasing mobility of polymer structure and, thus, decreasing mechanical resistance. 
On the other hand, the oil-starch bonds promote structural stiffness and increase polymer 
mechanical strength (41). However, excessive apolar components could reduce cohesion of 
starch binding forces and consequently, mechanical strength (24, 27). 

Table 3 (page 131), shows average elongation at break (Eb) of 4.33%. In other 
studies, Eb values were higher, indicating low flexibility of our films. Biofilms made from 
anchovy (Coccinia abyssinica) starch with cellulose nanocrystals and rosemary essential oil 
reported Eb values between 27.71 and 73.91% (27). Others made of starch with soybean 
oil showed Eb of 58.32% (58); while films made of Dioscorea hispida Dennst starch and 
natural antimicrobial agents from turmeric extract showed Eb of 30.24% (28). Films made 
of cassava starch with cinnamon essential oil had Eb values between 128 and 264%; others 
made of corn starch with essential oils had Eb values from 30 to 170% (20). In bioplastic 
films made of cassava starch with cinnamon, cloves, and oregano essential oils, Eb values 
ranged between 8 and 17% (1), while films of rice starch with oregano essential oil, showed 
Eb values between 83.5% and 108.8% (45).

Bioplastic low flexibility is related to intra-structure free volume. Molecular movement 
of the polymer is directly proportional to intern free volume. Based on the above, we state 
that molecular adhesion in the assessed bioplastic matrix was high, and films had low free 
volume. Components promoting molecular mobility are glycerol, behaving as a plasticizer, 
and tween 80, a surfactant. Surfactants increase free volume into adjacent starch chains 
generating a flexible structure (44).

 
Scanning electron microscopy
Figure 1, and figure 2 (page 133), show flm cross-section and surface micrographs 

obtained by scanning electron microscopy. A smooth and homogeneous surface on both 
sides of the film indicate mixing and forming processes that allow whole matrix integration 
and adhesion. This indicates good bioplastic functionality for food packaging. The 
appropriate linkage of matrix components directly affects mechanical strength and stability 
against moisture. In the first case, a more compact structure could have high resistance 
and lower deformation or breakage capacity. Researchers stated that the finely distributed 
structure shown in the cross-section of corn starch films through SEM justified a better 
physical-mechanical behaviour and even better antibacterial response than other films 
without this characteristic (20). 

Figure 1. Scanning electron microscopic image of a cross-section of bioplastic film.
Figura 1. Imagen de microscopía electrónica de barrido de la sección transversal de la 

lámina bioplástica.
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 Structural integrity leads to good mechanical properties such as tensile strength and 
deformation, given by a high intermolecular interaction, components entanglement, and a 
continuous phase in the polymer matrix (45). Thus, interfacial interactions between mixture 
components and the essential oil are improved. On the other hand, when intermolecular 
linkage is high, the film has less porosity and empty spaces. Thus, bioplastics could have 
better stability against moisture.

In addition, no oil droplets were observed on film surface. In this regard, oil droplets may 
cause discontinuity, resulting in a cracked structure (4). 

Figure 2. Scanning electron microscopic image of the surface of bioplastic film.
Figura 2. Imagen de microscopía electrónica de barrido de la superficie de la 

lámina bioplástica.

Conclusions

Bioplastic films based on cassava starch showed antimicrobial activity against S. enterica, 
E. coli, and S. aureus, low permeability to water vapour, good mechanical resistance, and 
high homogeneity in the surface and internal structure, indicating appropriate component 
linkage. These bioplastics constitute alternatives for packaging of susceptible foods. In 
this regard, these films could be used in packaging of fresh fruits or dairy products such as 
cheeses, where a high vapour barrier is required.
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