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ABSTRACT

Ca? and Si** treatments confer resistance to biotic and abiotic stresses in many fruits.
In sweet cherries, Ca** improves shelf life extension during storage, but only CaCl, is used.
On the other hand, there is scarce information on CaCO, as a source of Ca?*, which has
shown increased firmness in berries. This study evaluated different treatments based on
Ca** (CaCl, and CaCO,) + Si** (Si0,) alone and combined with immersion in hydro-cooling
(0°C) on physicochemical characteristics of 'Bing' sweet cherries (Prunus avium L.) during
storage at low temperature (4°C). Results demonstrate that alone or combined treatments
(Ca?* and Si**) with hydro-cooling significantly affected skin and flesh color of sweet cherries.
Chromaticity (C*) was increased in treated fruits, indicating an intense red color, especially
in those cherries treated with CaCl,. Furthermore, firmness was increased during storage in
treatments with Ca?*, while Si0, treatment increased total soluble solids (TSS). Therefore,
combined treatments of Ca?* and Si** with hydro-cooling might be a promising postharvest
strategy to maintain desirable physicochemical characteristics in sweet cherries during
low-temperature storage.
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RESUMEN

Se ha demostrado que los tratamientos con Ca?* y Si?* confieren resistencia al estrés
bidtico y abidtico en muchas frutas. En cerezas dulces, el Ca?* mejora la extension de la
vida util durante el almacenamiento, pero solo se ha utilizado CaClZ. Por otro lado, existe
escasa informacion sobre el CaCO, como fuente de Ca?*, que ha mostrado un aumento de
la firmeza en bayas. En este estudio, se evaluaron diferentes tratamientos a base de Ca*
(CaCl, y CaCO,) + Si** (Si0,) solos y combinados por inmersién en hidro-enfriamiento (0°C)
sobre caracteristicas fisicoquimicas en cerezas dulces 'Bing' (Prunus avium L.) durante el
almacenamiento a baja temperatura (4°C). Los resultados demuestran que los tratamientos
solos o combinados (Ca* y Si?*) en hidro-enfriamiento afectaron significativamente al
color de la piel y pulpa de las cerezas dulces. Se aument6 la cromaticidad (C*) en los frutos
tratados, indicando un color rojo intenso, especialmente en aquellas cerezas tratadas con
CaClZ. Ademas, la firmeza aumento durante el almacenamiento en los tratamientos con Ca?,
mientras que el tratamiento con SiO, incremento la acumulacion de sélidos solubles totales
(SST). Por lo tanto, los tratamientos combinados de Ca* y Si** con hidro-enfriamiento
podrian ser una estrategia poscosecha prometedora para mantener las caracteristicas fisi-
coquimicas deseables en cerezas dulces durante el almacenamiento a baja temperatura.

Palabras clave
Prunus avium e firmeza del fruto e vida til ¢ fruto no climatérico e sélidos solubles totales
e color de la piel

INTRODUCTION

Sweetcherry (Prunus aviumL.) is one of the mostappreciated fruits worldwide. Attributes
such as sweetness, color, size, and flavor add up to being a rich source of antioxidants and
phytonutrients (14, 39, 40, 66). In Mexico, the current demand for sweet cherries exceeds
the 1,249 tons imported (17). In this country, cherry production is 144.45 tons, with only
35.5 ha established in the states of Chihuahua and Puebla (50). However, Mexico has regions
with high potential for its production (4).

Fruit firmness, skin and pedicel color, acidity, and sugar content in fresh sweet cherries
are major attributes influencing consumer acceptability (14). However, these attributes
are often lost in between harvest, packaging, transportation, and storage, especially
since sweet cherries are highly perishable and have a shorter post-harvest shelf life
(40, 42, 49). Post-harvest strategies should avoid water loss, softening, color deterioration,
and pedicel browning (14, 30, 53, 66). Nowadays, several technologies and practices, aimed
at preserving post-harvest quality of sweet cherries, target respiration and senescence,
increasing flesh firmness (10, 14, 54, 58, 66). In this regard, pre-harvest or at-harvest
treatments with calcium (Ca?*) and silicon (Si**) on sweet cherries extend storage life and
improve flesh firmness by minimizing respiration and increasing fruit flesh resistance
(14, 16, 31, 33, 46, 58, 63, 64).

Calcium is considered a critical, quality-defining nutrient in sweet cherries (63),
mainly promoting firmness by acting in association with pectin molecules at cell-wall level
(8, 38). CaCl, is the most widely used source of calcium in sweet cherries, both pre and
post-harvest, preserving fruit quality and reducing physiological disorders like cracking
(12, 14, 16, 27, 64). CaCO, is another less-known source of calcium for agriculture,
shown to increase firmness of ‘Shiraz’ grapes after pre-harvest foliar application (32).
On the other hand, silicon (Si?*), although not considered an essential element for plant
nutrition (7), has been suggested against various biotic and abiotic stresses in sweet cherry
cultivation (2, 7, 28, 46). Si** improves strength and stiffness of plant tissues and increases
wall extensibility (2, 23, 28). In addition, available literature demonstrates the safe use
of physical treatments like hydro-cooling on vegetables and fruits to extend postharvest
quality, especially by delaying firmness loss, reducing respiration rate and preserving fruit
flavor (58, 60).
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Therefore, chemical strategies like Ca?* and Si?* applications and physical treatments
like hydro-cooling on freshly harvested sweet cherries might maintain storage quality
(58,59). However, studies considering a combination of Ca?* and Si?* with hydro-cooling and
cool storage on post-harvest quality and shelf life of sweet cherries, are scarce (29, 53, 58).

Considering the aforementioned, the study aimed to evaluate the effect of post-harvest
treatments with Ca?* and Si** combined with hydro-cooling on physicochemical quality of
‘Bing’ sweet cherries during low-temperature storage.

MATERIALS AND METHODS

Fruits and chemical inputs

Sweet cherries 'Bing' (12 kg) were harvested from the commercial orchard “El Fulano”
(28°26'46” N; 106°45’1.6” W and 2013 m above sea level) located in the “Tres Lagunas”
ejido, in Cuauhtemoc, Chihuahua, Mex. Fruits were randomly collected from several trees
on east-facing branches and from the center of the canopy. For the treatments of Ca?* and
Si%*; food-grade CaClZ, CaCo,, and Si0, were purchased from Food Technologies Trading S.A.
de C.V. Mexico.

Immersion of fruits

Before starting treatments, cherries were disinfected by immersionina 1% (v/v) sodium
hypochlorite for 5 min, washed twice with sterile distilled water, and left to dry at room
temperature while packaged in commercial polyethylene boxes. Six treatments (solutions)
simulated hydro-cooling, using distilled waterand enoughice to keep the solutionsat 0°C (58).
Sweet cherries were immersed for 5 min in the evaluated solutions, all of them at 0.5%
according to previous studies (58). The evaluated solutions were T1 (CaCl,), T2 (CaCO,),
T3 (Si0,), T4 (CaCl, + Si0,), T5 (CaCO, + Si0,) and a control treatment T6 (distilled water
at 0°C). Thirty-two selected fruits were used in each treatment considering post-harvest
evaluation dates 0, 7, 14 and 21 days after treatment. After the treatments, fruits were
drained, placed on brown paper to dry at room temperature, packed in commercial
polyethylene boxes (500 g) and immediately stored at 4°C with relative humidity of ~85%.

Basic physicochemical properties

Physicochemical changes were measured by monitoring weight, firmness, color, total
soluble solids (TSS; °Brix), and titratable acidity (TA). Measurements were expressed as
the average of 32 fruits. The standard error (SE) was estimated at each evaluation time.
Fruit weight was determined with an electronic balance, 0.01g precision, Precisa B] 610C
(Precisa Gravimetrics AG/Switzerland). Fruit firmness was evaluated as fruit resistance to
a deformation of 15% of fruit diameter using a plunger of @#=6 mm on a stationary steel
plate, attached to a Universal Texture Analyzer TA-XT2i (Texture Technologies Corp. USA)
according to previous studies (6). Data were expressed in Newtons (N) using the Texture
Exponent Lite program. Skin color (CIELab parameters L* C* and h*) was measured at
opposite sites of each fruit with a colorimeter CR-300, Minolta, (Japan). Total soluble solids
content (TSS= °Brix) was determined in fruit juice with a digital refractometer PAL-1 pocket
(Atago, Japan). Finally, titratable acidity (TA expressed as g 100 g™! of fresh weight ‘FW’)
was measured by diluting 1 g of flesh in 9 mL of distilled water, followed by 3 drops of
phenolphthalein and titrated with 0.1 N NaOH until pH 8.2 (6). The maturity index was
expressed as the ratio of TSS: TA (34).

Experimental design and statistical analysis

Results were statistically evaluated according to a split-plot in-time design. ANOVA and
LSD mean tests were used to detect significant differences among treatments at p<0.05
using SAS System for Windows 9.0 (SAS Institute. Inc. Cary, N.C., USA, 2002) after testing
assumptions. All experiments were conducted using four replicates.
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Different letters
indicate significant
differences (p<0.05)
between treatments for
each storage date.

Las letras diferentes
indican diferencias
significativas (p<0,05)
entre tratamientos
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almacenamiento.
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RESULTS AND DISCUSSION

In hydro-cooling, calcium and silicon treatments (alone or combined) significantly
influenced some quality parameters and shelf life in sweet cherries during low-temperature
storage (figure 1, figure 2, page 118 and figure 3, page 119). Various studies have extensively
documented that Ca?* applications in fruits favor storage conservation. In sweet cherries, it
has been documented that Ca?* delays deterioration, favorably influencing physicochemical
attributes like weight, color, firmness, TSS, TA, pH, respiration rate, and anthocyanin content,
especially during storage (14, 31, 57, 58, 59, 60). Shelf life extension in sweet cherries could
be attributed to Ca?*increase in the cell walls, favored by rapid absorption of Ca?* by the fruit
flesh under hydro-cooling immersion (19, 27, 59, 61).
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Figure 1. Effect of post-harvest treatments based on calcium (Ca?*) and silicon (Si*)
sources, alone and combined with hydro-cooling on weight loss (A) and firmness (B) in
'Bing' sweet cherries during storage at low temperature.

Figura 1. Efecto de los tratamientos poscosecha basados en fuentes de calcio (Ca?") y
silicio (Si**) solas y combinadas con hidro-enfriamiento sobre la pérdida del peso (A) y la
firmeza (B) en cerezas dulces 'Bing' durante el almacenamiento a baja temperatura.
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Figure 2. Effect of post-harvest treatments of calcium (Ca?*) and silicon (Si**) sources
alone and/or combined with hydro-cooling on skin color (L* C* h°) in 'Bing' sweet cherries
during low-temperature storage.

Figura 2. Efecto de los tratamientos poscosecha de fuentes de calcio (Ca?") y silicio (Si*)
solas y/o combinadas con hidro-enfriamiento sobre el color de la piel (L* C* h°) en cerezas
'Bing' dulces durante el almacenamiento a baja temperatura.
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Figure 3. Effect of post-harvest treatments of calcium (Ca?*) and silicon (Si**) sources alone
and/or combined with hydro-cooling on total soluble solids (TSS; A), titratable acidity (TA; B)
and maturity index (TSS/ TA; C) in 'Bing' sweet cherries during low-temperature storage.

Figura 3. Efecto de los tratamientos poscosecha de fuentes de calcio (Ca?) y silicio (Si*)
solas y/o combinadas con hidro-enfriamiento sobre los sélidos solubles totales (SST; A), la
acidez titulable (AT; B) y el indice de madurez (SST/AT; C) en cerezas dulces 'Bing' durante

el almacenamiento a baja temperatura.
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Weight loss is the most important parameter for horticultural crops and fruit quality
and shelf life. All treatments based on Ca?" and Si** sources, alone and combined with
hydro-cooling, affected weight loss of sweet cherries during storage (figure 1, page 117).
According to previous studies (51, 66), weight loss in stored fruits mainly depends on
transpiration and respiration. Interestingly, cherries treated with Ca?* lost less weight
during storage compared to untreated cherries (figure 1, page 117), suggesting that Ca*
ions increased cell wall stability. Other studies mention increased cell wall stability after
Ca?* ions bind non-esterified pectins and stabilize cell membranes, preventing electrolyte
leakage and consequently preventing fruit moisture and weight loss (1, 38, 41). The
observed weight values in fruits treated with Ca?* could have been influenced by the amount
of this element absorbed through the skin (through the lenticels and peduncle pores) during
the 5-minutes exposure (44). Similarly, previous studies (15) documented that combined
Ca-Glu (calcium gluconate) treatment, limited weight loss in sweet cherries.

Sweet cherries treated with SiO, showed rapid weightloss on day 21 of storage, however
less evident than for control fruits (figure 1A, page 117). Similarly, other studies (3) have
documented that SiO, was less effective in preventing weight loss in post-harvest fruits of
Citrus x sinensis, while Rombola et al. (2023) found that foliar sprays with sodium silicate
(Na,SiOs3) decreased cherry weight at harvest.

Firmness is a major attribute in fruits (43). Broadly, our study showed a gradual loss
of firmness concerning storage time indicating senescence, with significant differences
among monitoring dates and treatments. According to previous studies (14), decreases in
this parameter are more noticeable during storage. Softening of sweet cherries is attributed
to enzymatic degradation of pectic compounds in the middle lamella of the cell walls by
polygalacturonases, pectin methyl esterases, cellulases, and [3-galactosidases (62). All sweet
cherries treated with Ca?* and Si** were firmer than control fruits (figure 1B, page 117).
Studies have suggested that pre- and post-harvest treatments with Ca?* and Si?* favor greater
firmness in fruits at harvest time and during storage (27, 55). Sweet cherries containing
insufficient Ca?* are softer, and, therefore, more susceptible to quality losses during storage
(10). Fruits treated with CaCl, were the firmest compared to control fruits after 21 days
of storage (figure 1B, page 117). It has been evidenced that CaCl, applied before and/
or after cherry harvest increases firmness values up to 0.6 N (14, 63, 64). Our study is
consistent with previous studies (10, 14, 15, 27, 55), reporting increased fruit firmness in
treatments with Ca?* before harvest and/or in recently harvested cherries. The treatments
(CaCO, and CaCO0,+Si0,) also favored greater firmness of sweet cherries but to a lesser
extent than CaCl, (figure 1B, page 117). Similarly, other studies (32) documented firmer
‘Shiraz’ grapes after pre-harvest foliar treatment with CaCO,. In our study, the treatment
with Si0, alone was the least effective, although slightly superior to the control.

The greater firmness of sweet cherries treated with Ca?* is attributed to the ability of
this element to maintain cell wall mechanical properties and integrity during storage, which
consequently delays softening (14, 44, 47). According to previous studies (38), Ca?* acts in
association with pectin molecules in fruit cell walls. It has also been suggested that Ca*
maintains fruit firmness by reducing water loss and stabilizing the membrane, given this ion
is responsible for binding phosphate and carboxylate groups of membrane phospholipids
and proteins (62, 65).

Surface color of cherries is determined by factors such as radiation at the end of fruit
development, and temperatures near harvest (13). Recently, it has been documented
that color of sweet cherries is influenced by post-harvest treatments based on Ca* and
Si?* (14,46).0nthe otherhand, accordingto otherstudies (21, 36), the chromatic functions L*,
C* and h° are closely correlated with color change and anthocyanin accumulation in sweet
cherries during ripening. Interestingly, after 21 days of storage, sweet cherries treated with
Ca?* or Si** showed increased chromaticity (figure 2, page 118), redder and intensity (C*),
especially in cherries treated with CaCl,. This effect could be due to the inhibition of skin color
development by Ca?* or Si*". The delayed skin color darkening may be related to senescence
inhibition (58, 59). Control fruits showed a darker red color attributed to chlorophyll
degradation and accumulation of anthocyanins during storage (5, 18). Coincidentally, other
studies (21) reported that the higher the anthocyanin content in sweet cherries, the lower
the values of L* and h°.
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The L* value in sweet cherries decreased during storage in all treatments, not showing
significant differences among treatments (figure 2, page 118). Sweet cherries treated with
CaC0,+Si0, and CaCl,+Si0, showed a higher h°angle (figure 2, page 118), indicating reduced
red tones (h°) than control fruits and suggesting lower skin anthocyanin content (21, 37). In
contrast, Rombola et al. (2023) documented that Si?+ reduced hue (h°), brightness (C), and
saturation of cherry skin/flesh, while, Karagiannis etal. (2021) documented that foliar sprays
with Si?+induced skin color developmentin apples by stimulating anthocyanin accumulation.
In this experiment, sweet cherries treated with CaC0,+Si0, and CaCo, showed higher L*and
h°values (figure 2, page 118) compared with control fruits, probably given to suppression
of respiratory processes by CaCO,, as previously established in cherries treated with Ca’+ at
harvest (14). The positive effect of CaCO, on skin and flesh color in sweet cherries is given
by Ca%+ activation of ABA biosynthesis, which influences anthocyanin biosynthesis in
non-climacteric fruits such as cherries (20, 32).

The TSS concentration in sweet cherries significantly increased according to storage
time in all treatments (figure 3A, page 119). Increasing TSS concentrations during storage
is only frequent in climacteric fruits (22, 35). Therefore, the highest TSS concentrations in
non-climacteric sweet cherries might be favored by a pronounced weight/moisture loss in
Si0, treated and control fruits (figure 1A, page 117). The SiO, and CaCl,+Si0O, treatments
significantly increased TSS in sweet cherries (figure 3A, page 119), like previously
documented by Rombola et al. (2023), who suggested that Si** forms a protective film
covering fruit surface and preventing transpiration, slowing down phloem translocation,
and subsequent sugar accumulation. The high concentration of TSS (figure 3A, page 119) in
SiO,-treated fruits might also be due to sugar concentration after greater weight loss (figure
1A, page 117) (11), something not observed in CaCl,, treated ones.

On the contrary, lower TSS values were observed in sweet cherries treated with CaCl,
compared with control fruits. This coincides with other studies (9, 15), documenting low TSS
contents in Ca*-treated cherries. Both studies attributed these results to lower respiration
rates in treated cherries, leading to cell wall and membrane stabilization. This could
also be attributed to delayed moisture and weight loss (figure 1A, page 117) after pectin
stabilization and consequent effects on cell wall and membrane structure (32).

TA in sweet cherries also decreased over time during storage for control, Ca** and Si?*
treatments evidencing significant differences (figure 3B, page 119). Similar results were
documented in ‘Sweetheart’ and ‘Lapins’ sweet cherries during storage (58). Low acidity
mainly depends on ripeness state (45); however, during storage, organic acids might be used
as carbon source during respiration (15, 25, 26, 60). After 21 days of storage, sweet cherries
treated with Ca?* and Si** maintained TA above values recorded for control cherries. However,
the highest TA values were measured in CaCl, -treated fruits (figure 3B, page 119). Sweet
cherries treated with CaCO, and CaCO,+Si0O, also showed high TA values. Coincidentally,
treatments with Ca** (such as CaCl, and Ca-Glu/calcium gluconate) in pre-harvest and/
or before storage of sweet cherries, also preserved or retarded TA loss during storage,
compared to control fruits (14, 15, 48, 55, 58).

Delayed loss of TA during storage of sweet cherries treated with Ca?* sources could be
due to the suppressive effect on fruit metabolic activity, especially respiration (15, 35, 56).

The maturity index TSS/TA indicates commercial and organoleptic maturity of fruits
(34, 45). High contents of both TSS and TA are associated with good flavor in sweet
cherries (52, 53). The TSS/TA ratios in 'Bing' sweet cherries treated with Ca?* and Si** were
statistically different (figure 3C, page 119), however increasing over time in all treatments
and indicating a higher acid vs. sugar content ratio. TSS/TA ratio in sweet cherries treated
with CaC0,+Si0,, CaCOsy and CaCl2 remained lower than control after 21 days of storage,
indicating diminished respiration rates. While TSS/TA ratios in SiO, treatments remained
above control values.
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CONCLUSIONS

Immersion of freshly harvested 'Bing' sweet cherries with hydro-cooled solutions of Ca**
(CaCl, and CaCO,) and Si** (Si0,) alone and combined markedly improved quality properties
and extended storage capacity at low temperatures. All treatments based on Ca?* and Si*
alone reduced weight loss while maintaining firmness, and acidity in sweet cherries. Skin
color of sweet cherries treated with Ca** and Si?* was more intense than control fruits. Sweet
cherries treated with CaCl, were the firmest and had the highest TA values. SiO, increased
TSS concentration in sweet cherries, while CaCl2 decreased it.
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