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Abstract

The architecture of plants responds to endogenous processes and to the influence 
of environmental factors. The allometric study of architecture has been a challenge for 
biology. We define a new finite (Hausdorff) dimension of plants, that considers both the 
aerial part and the roots, and compute examples. This new finite dimension was intro-
duced recently and, in contrast to the classical Hausdorff dimension, is not zero on finite 
sets. We propose the finite dimension, as a function of time, as a "signature" of the plant 
or root. Our first results suggest that the signature is specific to each plant species and its 
growth period, and constitutes an objective metric that allows to study its ontogenesis 
in detail.
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Resumen

La arquitectura de las plantas responde a procesos endógenos y a la influencia de 
factores ambientales. El estudio alométrico de la arquitectura ha sido un desafío para 
los biólogos. En este trabajo definimos una nueva dimensión finita (de Hausdorff) de 
plantas, considerando su parte aérea y de raíces y calculamos algunos ejemplos. Esta 
nueva dimensión finita fue introducida recientemente y, a diferencia de la dimensión 
clásica de Hausdorff, no es cero en conjuntos finitos. Proponemos que la dimensión 
finita, como función del tiempo, es una "firma" de la planta o raíz. Nuestros primeros 
resultados sugieren que la firma es específica para cada especie de planta y su período 
de crecimiento, y constituye una métrica objetiva que permite estudiar detalladamente 
la ontogénesis.

Palabras clave
dimensión fractal • dimensión finita (de Hausdorff) • arquitectura de plantas • 
desarrollo de plantas

Introduction

The morphological structures of plants 
can be thought of as the translation of 
a program of endogenous development 
that influences the relative disposition 
of the aerial and subterraneous axes that 
express the plants' architecture (12). 
This is the expression of endogenous 
processes and of the plants' answer to 
the external factors that influence them 
along their lives (26). Plant architecture 
is defined as the three-dimensional 
organisation of the plant’s body. Plant 
architecture determines their ability to 
compete for resources (22). For the parts 
of the plant that are above ground, this 
includes the branching pattern, as well as 
the size, shape and position of leaves and 
flower organs. For example, among other 
factors, the aerial architecture deter-
mines the ability of plants to use light, 
and the root system architecture, their 
ability to explore the soil (12). In this way, 
modelling and analysing the allometries of 
plants allows us to interpret their adaptive 
strategies and their ability to respond to 
environmental factors, and even to devise 
productive managerial strategies (16). 

Different approximations have been used 
in the quantitative study of architecture. 
However, the identification of allometric 
variables that synthesise the architecture 
of plants and can be followed during onto-
genesis and used to make comparisons 
between species or between environ-
ments, is still under discussion.

There is a long tradition in biology, 
going back at least to the 1890's, of 
computing allometries (9). A prominent 
example is Kleiber's law (15, 16):

R = aM3/4 			                             (1)

where:
R = the metabolic rate
a = a constant
M = the body mass, the so-called 

"quarter-power scaling" of metabolic rate 
to body mass.

In the late 1990’s West et al. (1997, 
1999a, 1999b), proposed a model 
to explain the exponent 3/4 in Eq. (1), 
by assuming a fractal-like design of 
resource distribution networks and 
exchange surfaces. The exponent can 
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be interpreted as a "fractal" dimension. 
The model of West et al. (1997, 1999a, 
1999b) stimulated further investigation 
and a renewed interest in computing the 
"fractal" dimension of plants, including 
a debate about the quality and analysis 
of the supporting empiric evidence. In 
any case, it is clear that this model has 
had a profound influence and dominated 
the subject in the last two decades. Also, 
a large body of work has been produced 
aimed at clarifying the situation (10, 11, 
18, 19, 20, 21, 24, 25).

Even in the case of roots there is a large 
literature on "fractal" dimension, starting 
in the late 1980's with the pioneering 
papers of Tatsumi et al. (1989) and Fitter 
and Stickeland (1992). The shared point 
of view is that root systems are "fractals" 
-meaning self-similar objects- and merit, 
therefore, the study of their "fractal" 
geometry and dimension. By "fractal" 
dimension they mean the box-counting 
dimension of Falconer (2003), which 
they approximate and compute in various 
ways. In fact, a troublesome issue found 
in the literature, common to the "fractal" 
dimension of plants and roots, is the 
difficulty in comparing results obtained 
with different methods and choices (5). 
This issue is even worse for roots, due to 
the difficulty in accessing root systems. 
Another issue is the very tentative inter-
pretations of the values obtained (28). It is 
worthy of note that Tatsumi et al. (1989) 
and Fitter and Stickeland (1992) consider 
the ”fractal” dimension not only as a single 
number, but as a function of time.

We refer the reader to the extensive 
bibliography on allometries in biology, and 
on the model of West et al. (1997, 1999a, 
1999b), and content ourselves with the 
brief discussion and short literature list 
we have presented. This is motivated by 
the fact that our work, while sharing the 
interest in dimension with these works, is 

quite different. Indeed, in contrast to the 
literature we have mentioned, we make no 
assumptions on the plants; in particular, 
no self-similarity assumptions. Our aim is 
simply to compute the finite dimension of 
plants and roots (as in Eq.(2)) and try to 
understand what it says about them.

In this paper we define a new dimension 
for plants and roots, called finite dimension 
and denoted dimf, and compute a few 
examples. The finite dimension is a real 
number which is computed every time 
the plant or root is measured; thus, we 
consider dimf  as a function of time rather 
than as a single number. Our approach is 
new in two ways: (a) we use a new defi-
nition of "fractal" dimension, called finite 
Hausdorff dimension, denoted dimfH, and 
(b) we model plants and roots by means 
of (mathematical) trees. Schematically, 
every time the plant or root is measured, 
we have:			               (2)

Π(t)→TΠ(t)→dimf (Π)(t):=dimfH(V (TΠ)(t))
 

where:
Π(t) = denotes the plant or root Π 

measured at time t
TΠ(t) = mathematical tree associated to 

Π(t)
dimf(Π)(t) = finite dimension of Π at time
t = defined to be the finite Hausdorff 

dimension of V (TΠ)(t), the set of nodes of 
TΠ(t)

This process will be explained in more 
detail in Section "The model". Finite Haus-
dorff dimension was introduced in Alonso 
(2015), was further studied in Alonso 
(2016), and was used in Alonso (2018) to 
study glycans and their structure.

There are several advantages with this 
new dimension in relation to the "fractal" 
dimension reported so far in the literature. 
One is that the process of measuring, 
while laborious, is rather error-free. 
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This makes results easy to compare and 
reproduce. Another is that, while its 
meaning is not completely transparent, 
we have a good understanding of what the 
finite dimension measures, and what its 
variation in time means (cf. Section "What 
dimf (Π) measures"). This turns dimf  into 
an objective and reasonably well under-
stood measure from which we can deduce 
information about ontogenesis. In fact, we 
regard finite dimension not as a number 
but as a sort of signature of each species, 
intimately related to its ontogenesis.

Metodology

Finite Hausdorff dimension
We know from elementary geometry, 

that any finite set of points has dimension 
0, a segment or a line has dimension 1, a 
square or an open subset of the plane has 
dimension 2, and ”space” has dimension 
3. In the 1880’s finite dimensional vector 
spaces were defined in full generality, 
extending dimension to any nonnegative 
integer: 0,1,2,...,n,.... But associating a 
dimension to more complicated sets (like 
the Cantor set, for instance) had to wait 
for Felix Hausdorff’s definition (1919) of 
what we now call Hausdorff dimension, 
denoted dimH. Hausdorff’s definition is a 
far-reaching generalisation that associates 
a dimension to a vast class of subsets of 
Euclidean space (7). But there is a price to 
be paid: dimH has often irrational values, 
not integers. This is at the origin of the 
word "fractal". However, when it comes 
to classical geometric objects like the 
ones mentioned at the beginning of this 
section, dimH gives the well-known values. 
In particular, the Hausdorff dimension of 
finite sets is zero.

The importance of finite sets has 
increased in time, among other things 
thanks to computers, which can only 

handle finite sets. Finite Hausdorff 
dimension, dimfH, is a variation of Haus-
dorff dimension introduced recently (1). It 
is defined only on finite sets, but its values 
can be any real non-negative number, or 
infinity. The point of this new dimension 
is that it is non-trivial on finite sets and, 
hence, can discriminate among them, just 
as the classical dimension discriminates 
among continuous sets. Rather than giving 
a rigorous account of the definition and 
properties of finite dimension, we content 
ourselves with a quick overview in section 
"The finite Hausdorff dimension of trees 
and roots" below and for more detail, refer 
the reader to Alonso (2015, 2016) which 
treat, respectively, the general case and 
that of graphs, which is the case we need 
for plants and roots.

The model
Natural trees and mathematical trees
Graphs consist of vertices (or nodes) 

and edges (that join certain pairs of 
vertices). A mathematical tree, is a simple, 
connected, non-directed graph without 
circuits. Simple means that between 
any two nodes there is at most one edge 
connecting them; connected refers to 
the fact that any two nodes v,w can be 
joined by a path, i.e. there is a sequence 
of edges e1 ...en, where ei  joins nodes vi−1,vi, 
and v = v0, vn = w. A circuit is a path with 
distinct edges, whose initial and last nodes 
coincide, i.e. v0 = vn.

We model natural trees and plants 
Π by means of mathematical trees TΠ, as 
follows. Nodes correspond to ramification 
points, endpoints (of leaves or branches 
or twigs, as the case might be), and "the 
point" where Π goes into earth. We abuse 
language and do not distinguish between 
"nodes" (i.e. vertices of TΠ) and "points" 
(i.e. the corresponding points of Π: rami-
fication, end or contact with earth). Edges 
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represent the space between consecutive 
nodes, and are assigned a length equal to 
the actual length, measured on the plant Π, 
between these consecutive nodes. In our 
model, the thickest trunk and the thinnest 
twig are equally modelled by a segment 
that joins the corresponding nodes. In 
other words, we model the length but not 
the thickness of internodal segments. This 
explains the step Π → TΠ of Eq. (2) (page 144).

The intrinsic distance
Next, we define a distance on V (TΠ), the 

set of nodes of TΠ (2). The length of a path 
in TΠ is define to be the sum of the lengths 
of each of its edges. The distance d(v,w) 
between nodes v,w is the minimum length of 
all paths joining v and w (we might add that, 
since TΠ is a tree, there is exactly one shortest 
path joining v,w). This definition of d(v,w) 
gives the intrinsic distance; informally, this 
is the distance "inside" the plant, i.e. the 
distance travelled by an ant on the plant, not 
the extrinsic distance, i.e. the bird’s distance 
obtained by connecting v and w by a straight 
segment lying in the 3-dimensional space 
that surrounds the plant. Using the intrinsic 
distance is an important modeling decision; 
clearly this distance lies closer to the plants 
"own" distance (say, when transporting 
nutrients) than the ambient distance which 
is, perhaps, more "natural" for us humans. 
A practical implication of this decision 
is that the spatial structure of a plant or 
root system is completely ignored by the 
finite dimension.

Researchers using the box-counting 
dimension must deal with a difficult 
problem: transforming the spatial 
structure of plants and roots to a planar 
structure from which to approximate de 
box-counting dimension, and hope the 
final result is somewhat independent of 
the method used. Using finite dimension, 
we avoid completely this difficulty -which 
is even worse for root systems.

The end-result is that we replace a plant 
Π by a mathematical tree TΠ, and endow 
the nodes V (TΠ) with the intrinsic distance 
obtained by measuring the internodal 
distance in the plant itself. Thus V (TΠ) is now 
a finite metric space whose finite Hausdorff 
dimension can be calculated. We define:

dimf(Π) := dimfH(V (TΠ))

As explained earlier, we repeat this 
procedure at each designated time in 
order to make the finite dimension a 
function of time. In practical terms, we 
have to define the position of nodes in the 
plant itself, and measure the internodal 
distances. This may be laborious but it is 
straightforward and relatively error-free. 
In any case, it is more exact than existing 
methods of computing various "fractal" 
dimensions of plants.

The finite Hausdorff dimension of trees 
and roots

We explain the definition through an 
example and refer the reader to Alonso 
(2015, 2016) for details. Consider for 
example the tree TΠ of figure 1 (page 
147). The figure suggests that the longest 
distance one can travel inside TΠ is d(E,G) 
= d+b+e+g (we assume this is the case). 
This distance is called the diameter of 
the mathematical tree, denoted ∆(TΠ); in 
this situation, we say that the diameter 
is attained at E,G. As usual, we abuse 
notation and call ∆(TΠ) the diameter of 
the plant itself. Note that ”diameter” for 
us means the longest possible distance 
between nodes of a mathematical tree, not 
to be confused with the diameter of trunks, 
branches or twigs, which for us are zero, 
as explained in Section "The model" The 
finite dimension is computed by solving 
for s the equation:                                               (3)

as + cs + ds + fs + gs + hs = ∆(TΠ)s = (d + b + e + g)s



147

Finite (Hausdorff) dimension of plants and roots as indicator of ontogeny

Tomo 51 • N° 2 • 2019

The numbers a,...,h are measured 
internodal distances and are known. 
The left-hand side of Eq. (3) (page 146), 
is computed as follows: first we find 
a 2-cover of the vertices of TΠ, i.e. the 
smallest number of adjacent nodes that 
cover V (TΠ). These are represented by six 
red ellipses in figure 1. Then we raise the 
length of the edge enclosed by each ellipse 
to the power s (s is the only unknown in 
Eq. (3)), and add over all elements of 
the 2-cover. The right-hand side is the 
diameter raised to the power s. It can be 
shown (1) that, in the cases of our interest 
here, there will be exactly one value s0 that 
solves Eq. (3); this value is defined to be 
the finite dimension, dimf(Π) := s0.

What dimf (Π) measures
The left-hand side of Eq. (3) represents 

the s-dimensional volume (s-volume, 
for short) of Π. Recall that the area (i.e. 
2-volume) of a disc of radius r is (π/4)∆2, 
and the volume (i.e. 3-volume) of a ball 
of radius r is (π/6)∆3, where ∆ = 2r is the 
diameter of the disc or ball. Thus, we think 
of an expression like as as an ”s-volume” 
because this term, up to multiplication 
by a universal constant, is actually an 
s-volume in Euclidean geometry.

The right-hand side of Eq. (3) repre-
sents the s-dimensional volume of the ball 
of radius half the diameter of Π. It is the 
s-volume the plant would have if it were a 
solid ball of the given diameter.

Figure 1. A metric mathematical tree TΠ with 9 vertices, and a 2-cover.
Figura 1. Árbol matemático métrico TΠ de 9 vértices, con un 2-cubrimiento.
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We interpret the sum of the lengths of the 
elements of the 2-cover, a + ··· + h, as the actual 
mass of the plant (even when it is not equal 
to the sum of all the edges), and the diameter, 
∆(TΠ) = d + ··· + g, as the reference mass.

Thus, the finite dimension is 1 when 
the actual mass equals the reference mass. 
Mathematically, Eq. (3) (page 146), is such 
that s0, i.e. the finite dimension, is < 1 when 
the actual mass is less than the reference 
mass, i.e. when the tree is "sparse". And it is 
> 1 when the actual mass is larger than the 
reference mass, i.e. when the tree is "dense".

Rather than the exact number dimf(Π), 
we focus attention on dimf(Π)(t), the finite 
dimension as a function of time. Indeed, it 
is the variation in time of dimf(Π)(t) that 
is of interest for us. Let t1 < t2 be two time 
points. Our measurements will generally 
increase from t1 to t2, so that ∆(t1) < ∆(t2) 
(i.e. the reference mass will grow), and 
also the actual mass will grow, as the plant 
continues to grow and ramify. This does not 
necessarily mean, however, that dimf(Π)
(t1) < dimf(Π)(t2); in fact, all three possi-
bilities can occur. When dimf  decreases 
[increases, or stays the same, respectively], 
the reference mass grows more than [less 
than, or at the same rate as, respectively] 
the actual mass. If we think of the ratio 
of reference to actual mass as a sort of 
"density" of the plant, we can interpret 
these three situations by saying that the 
"density" decreases, increases or stays the 
same. Note that claims like "the reference 
mass grows more than the actual mass" 
can equally well be read as "the actual mass 
grows less than the reference mass", etc.

Experiments
The finite dimension of the aerial archi-

tecture of Lecanophora heterophylla (Cav.) 
Krapov. and Larrea cuneifolia Cav.

We measured simultaneously 9 plants 
of Lecanophora heterophylla and of Larrea 
cuneifolia. Measurements were taken 

approximately once a week, from about a 
week after germination. Plants were kept 
at field capacity, the substrate was sandy 
loam. Maximum and minimum mean 
daily temperatures during the experiment 
ranged between 17.6° and 7.8°C, relative 
humidity was 59.7%, and there was no 
precipitation during the experiment. 
The seeds were harvested in Mendoza's 
piedmont. Experiments were conducted 
at the experimental field of IADIZA 
(Insituto Argentino de Investigaciones 
de Zonas Áridas) (32°53' S; 68°57' W), an 
institute of Centro Científico Tecnológico 
(CCT), Mendoza-CONICET (Argentina). 
To measure internodal distances we used 
a caliber (Mitutoyo, Model N° CD-6"PSX, 
with resolution: 0.01mm), and a powerful 
magnifying glass.

Both species belong to the native flora 
of the dry regions of Argentina's West, 
in the biogeographical Monte province. 
They were chosen to simultaneously show 
different forms of growth, by comparing 
two different forms of life: herbs and 
bushes. The way each species develops 
determines the velocities at which those 
parts of the plant that we measure (bifur-
cations, nodes, internodes, leaves) appear. 
Moreover, different parts of plants grow at 
a different pace, usually in different times 
of the year (16). All this information on 
the plant, the time and rate of appearence 
of the different parts, their number and 
growth rate, is combined by dimf(Π) to 
produce, in the end, a single number (each 
time one measures): the finite dimension.

Lecanophora heterophylla belongs to 
the family Malvaceae and is endemic to the 
dry regions of Argentina; it has great orna-
mental potential, and is found between 
0 and 2,500 meters above sea level. It 
is distributed through dry and half-dry 
habitats from Río Negro to Tucumán. 
These plants have erect and cylindrical 
stems, and deep roots.
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Larrea cuneifolia (jarilla in Spanish) is a 
bushy species of the family Zygophyllaceae, 
endemic of South American deserts, with 
a wide distribution from Central-Western 
Argentina to the Center of Patagonia, 
between 0 and 3,000 meters over sea level. 
It is a bush up to 2 m high, with branches 
oriented pointing North and South, in 
such a way that the leaves are exposed to 
the morning sun, on the one side, and to 
the afternoon sun on the other.

The finite dimension of roots of Leptochloa 
crinita (Lag.) P.M. Peterson & N.W. Snow

To understand the development of 
roots we used as model Leptochloa crinita. 
We computed the finite dimension of the 
roots of two samples, of one root each, 
with different water regimes: one was 
permanently kept at field capacity, and 
the other was subjected to periods of 
stress, receiving a unique initial watering, 
where plants were watered at 50% of field 
capacity. The experiment took 92 days 
from sowing time. Measurements started 
a week after germination, and roots were 
recorded every 2-3 days, through an 
acrylic wall (prismatic plant pots with a 
transparent side).

Leptochloa crinita is of the family 
Poaceae, very common in South America. 
It is one of the most important grasses of 
the Monte biogeographic province. Grass-
lands of Leptochloa crinita extend from 
sub-humid to desertic areas in Argentina, 
Paraguay and Uruguay (23). This grass, 
which is well adapted to natural condi-
tions of habitat stress, provides pastures 
of good quality and is often used to 
regenerate pastures. Its fodder production 
varies substantially according to the envi-
ronment it lives in (6) and efforts are being 
made to select varieties with improved 
features for fodder production (17).

Results

Lecanophora heterophylla
The (average) finite dimension 

of Lecanophora heterophylla and of 
Larrea cuneifolia, together with the 
corresponding standard error bars, is 
summarised in figure 2 (page 150), from 
day 1 (first measurement) to day 49. We 
see that dimf  grows steadily up to day 30, 
then falls drastically on day 35 and there-
after remains between 1.50 and 1.65. The 
diameter of each plant is always attained 
at endpoints of leaves, not at endpoint 
of leave to soil. We could say that, in this 
case, the diameter measures the size of 
the "foliage" or "crown". All through the 
measurement period the diameter grew 
essentially at constant pace.

The pronounced dip between days 
30 and 35 means (cf. "What dimf (Π) 
measures") that the reference mass has 
grown more than the actual mass, i.e. the 
plant has become "sparser". In actual fact, 
all plants in the sample lost their coty-
ledon leaves in this period, thus producing 
an important decrease of the plant’s actual 
mass (while the diameter (i.e. the reference 
mass) continued to grow). As explained 
in Section "What dimf (Π) measures", the 
increasing values of dimf  in 1 - 30 mean 
that the actual mass increases faster than 
the reference mass, i.e. the number and 
sizes of leaves (the actual mass) increases 
faster than the size (the diameter, or 
reference mass) of the plant. Summa-
rising, Lecanophora heterophylla starts as 
a "foliage sparse" plant with "wide" crown 
and small "size" (initially it consists of two 
cotyledon leaves), and gradually becomes 
denser: initially the crown grows faster 
than the "size", but later crown and "size" 
grow roughly at the same pace.
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Larrea cuneifolia
We see from figure 2 that Larrea cunei-

folia does the opposite: its finite dimension 
decreases almost linearly in 1-30 and then 
remains in the range 1.6-1.7. In contrast to 
the previous case, the diameter of the plants 
is always attained at the endpoint of some 
leave and the soil point. Thus, for Larrea 
cuneifolia the reference mass is essentially 
the hight of the plant. That dimf(Π) falls in 1 - 
30 says that the reference mass grows faster 
than the actual mass, i.e. the height of the 
plants, grows faster than the number and 
sizes of branches and leaves. In the period 
30-49, reference and actual mass (i.e. hight 
and "size") grow at essentially the same 

pace. To summarise, Larrea cuneifolia starts 
as a "foliage dense" plant and gradually 
becomes sparser: initially the hight grows 
faster than the ”size”, but then hight and 
"size" grow roughly at the same pace.

Roots of Leptochloa crinita
The two roots were treated differently: 

the red one in figure 3 (page 151) was 
subjected to water stress, while the blue 
one received water at field capacity. The 
finite dimension of both roots decreases 
in 8 - 24. The first five values of the red 
line are at the top of the diagram which 
means, for the software used (the statis-
tical software R), that the value is infinite. 

Figure 2. Average finite dimension of L. cuneifolia and L. heterophylla, 
with standard error bars.

Figura 2. Dimensión finita promedio de L. cuneifolia y L. heterophylla, 
con error estándar.
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This says that the root is not ramified in 
this period. When it does ramify the finite 
dimension becomes finite and goes down. 
Not surprisingly, since both are of the 
same species, the blue one also decreases 
in this period and, indeed, reaches almost 
the same minimal value (around .84). 
We should also remark that these roots 
are far longer than wider, so that their 
diameters are achieved at soil-point to 
deepest endpoint.

Most interesting is the different 
behaviour of the roots in the period 24 - 
78. While the red one (with little water) 
grows steadily, at almost constant pace, 
the blue one (with lots of water) goes up 
and down, almost periodically. The inter-
pretation, using "What dimf (Π) measures", 
is that the plant that received less water 
in this period (red line) prioritises lateral 
growth over growth in depth. The plant 
that received water at field capacity (blue 
line), on the other hand, keeps changing 
priorities: growth in depth over lateral 
growth, and then the opposite, and so on.

Figure 3. Finite dimension of roots (Leptochloa crinita), with different 
water treatments.

Figura 3. Dimensión finita de raíces (Leptochloa crinita), con distintas 
condiciones de riego.
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Conclusions and future work

The results reported here show that 
dimf  closely follows the ontogenesis of the 
aerial part and roots of the plants studied. 
Moreover, they clearly show the different 
growth strategies followed by plants. This 
is why we believe that dimf(Π) is a good, 
objective measure of ontogenesis that, 
moreover, is reproducible because it is 
calculated with the same methodology for 
every type of foliage of plant or root. Our 
results suggest that each species has its 
own distinctive "signature".

This is a first, pioneering work in 
applying finite Hausdorff dimension 
to the study of plants. Our results are 
tentative because we have little empiric 
evidence. We have to study longer series 
of measurements, other species, other 

roots. This way we could prove or disprove 
our claims above, as well as elucidate, for 
instance, how dimf(Π) reacts to different 
management practices, e.g. pruning. Silvi-
cultural treatments applied to woody 
plants in arid zones still have a high degree 
of uncertainty (4, 16). We hypothesise that, 
after each practice, a plant tries to regain 
its "normal" finite dimension, as expressed 
in its finite dimensional "signature". These 
questions will surely lead us to a deeper 
understanding of how plants grow, and 
result in better management practices. 
In addition, if we can associate different 
functional traits with the finite dimension, 
it could become a tool to improve species 
in search of specific traits.
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