Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo. Tomo 57(2). ISSN (en línea) 1853-8665.
Año 2025.
Review
Nursery Production of Neltuma
Genus in Arid and Semiarid Regions of Argentine: a Review
Producción en vivero del
género Neltuma en regiones áridas y semiáridas de Argentina: una
revisión
Anabella Mirtha Massa Decon1*,
Silvina Pérez1
1Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias.
Almirante Brown 500. M5528AHB. Chacras de Coria. Mendoza. Argentina.
*sperez@fca.uncu.edu.ar
Abstract
Neltuma spp. (previously
known as Prosopis spp.) are vital for
ecological restoration and sustainable forestry in arid and semiarid
environments. Although extensively studied, nursery techniques are still
inconsistently applied, and poorly integrated. This review synthesizes recent
scientific advances in seedling cultivation under controlled conditions,
focusing on seed source selection, dormancy-breaking treatments, and
substrate-container interactions. This review incorporates developments
concerning seed source selection, plant physiology, and nursery trials to
identify knowledge gaps and propose strategies for reforestation improvement.
We offer actionable guidance for nursery operators, restoration professionals,
and policymakers. Future research should focus on long-term field studies,
genomic tools, standardization of nursery techniques, biological interactions
that improve stress tolerance, and economic feasibility, especially for
under-researched species.
Keywords: seed provenance,
nursery propagation techniques, substrate-container interaction, algarrobo
Resumen
Neltuma spp. (anteriormente,
Prosopis spp.) es una especie vital para la
restauración ecológica y la silvicultura sostenible en ambientes áridos y
semiáridos. A pesar de décadas de investigación, las técnicas de producción en
vivero para estas especies siguen siendo inconsistentes y mal integradas. El
objetivo de esta revisión es sintetizar los avances científicos recientes en el
cultivo de plántulas en condiciones controladas, centrándose en la selección de
la fuente de semillas, los tratamientos pre-germinativos y las interacciones
sustrato-contenedor. Para ello, este trabajo incorpora avances en selección del
origen de semillas, fisiología vegetal y ensayos de viveros para identificar
lagunas de conocimiento, y proponer un marco estratégico para mejorar la
reforestación. Para ello, se ofrece orientación práctica para los operadores de
viveros, los profesionales de la restauración, y los responsables de la
formulación de políticas públicas. Futuras investigaciones deberían focalizarse
en estudios de campo a largo plazo, herramientas genómicas, estandarización de
técnicas de vivero, e interacciones biológicas que mejoren la tolerancia al
estrés y la viabilidad económica, especialmente para especies subestudiadas.
Palabras clave: procedencia de
semillas, técnicas de propagación en viveros, interacción
sustrato-contenedor, algarrobo
Originales: Recepción: 26/05/2025
- Aceptación: 17/10/2025
Introduction
Neltuma, previously
known as Prosopis spp. (Hughes et al., 2022), is a dominant
genus in Argentina’s arid and semi-arid ecosystems (Scaglia
et al., 2024). Neltuma spp. play a critical role in
ecological functioning and service provision (Joseau et al., 2023; Oliva
et al., 2010; Vilela & Ravetta, 2005; Villagra et al., 2005). Their particular
resilience to extreme environmental conditions makes them key species for
restoration initiatives (Passera, 2000; Salto et al., 2019). In addition,
their presence in arid woodlands significantly influences understory plant
communities and supports biodiversity and pastoral systems (Cesca et
al., 2012; Venier et al., 2023), while providing important food and
pharmacological resources (Mazzuca et al., 2003;
Pastorino & Marchelli, 2021; Vilela & Ravetta, 2005).
Landscape natural regeneration with Neltuma spp. is often limited by seed predation and habitat degradation (Braun
Wilke et al., 2000; Lerner & Peinetti, 1996; Marone et al.,
2000; Milesi & Lopez de Casenave, 2004; Villagra et al., 2002),
making active restoration efforts essential. State incentives have promoted
native species cultivation, while shortage of robust seedlings hinders
reforestation efforts (Salto et al., 2013).
Researchers have
extensively explored the ecological, physiological, and genetic characteristics
of Neltuma spp..
Studies have typically focused on isolated components like genetic variability
(Bessega
et al., 2019; Darquier et al., 2013), germination
protocols (Bravo
et al., 2011; Vilela & Ravetta, 2001), or substrate and
container effects (Salto
et al., 2013, 2016; Senilliani et al., 2021). However, these
approaches do not offer integrated frameworks for nursery practices, leading to
high failure rates in the field (Guzmán et al., 2011).
Ecological data
like germination and seedling establishment rates are essential for
cost-effective and evidence-based restoration planning (Perez et
al., 2022). Addressing these challenges requires improved propagation
protocols, nursery management, and scalable, successful restoration strategies
(Pastorino
& Marchelli, 2021).
This review
integrates recent advances in genomics, plant physiology, and nursery trials,
approaches not synthesized in previous literature. This review focuses on
population genetic variation, dormancy-breaking treatments, and
substrate-container interactions. We also provide practical recommendations for
nurseries, restoration planners, and decision-makers. Producing high-quality
seedlings for sustainable forestry and ecological restoration gains particular
importance when considering climate change and land degradation.
Bibliographic
Search Methodology
This review covers
focused literature using Google Scholar as primary engine, complemented by
Scopus and SciELO for regional coverage. Although this is not a systematic
review, a structured and reproducible search strategy was applied. English and
Spanish keywords included “Prosopis”, “Neltuma”, “seedling
production”, “forest nursery”, “seed germination”, “pre-germinative
treatments”, “containers”, “substrate”, and “soil”. The inclusion criteria
considered peer-reviewed research conducted in arid and semi-arid regions of
Argentina between 1993 and 2025 addressing nursery production, seed
germination, genetic variation, substrate composition, and container design. We
excluded grey literature like non-peer-reviewed reports, theses or non-relevant
studies. The selection process included (I) an initial screening based on
titles, (II) an abstract review for relevance, (III) a full-text reading for
studies meeting inclusion criteria, (IV) data extraction and synthesis related
to species, treatments, morphological traits, and genetic data. A total of 79
peer-reviewed studies were selected and analyzed. We integrate ecological,
physiological, and operational insights to guide nursery practices and
restoration strategies for Neltuma spp..
Seed
Source Selection and Genetic Variation
Selecting the right
seed source is crucial for successful reforestation with Neltuma spp.. Genetic variation among populations is largely shaped
by geographic and environmental gradients influencing the development of
adaptive traits (Pastorino
& Marchelli, 2021). As a result, seed origin directly affects morphological and
physiological adaptations like seedling vigor, stress tolerance, and
adaptability to local conditions (Mantován, 2002; Vega et al.,
2020).
Intraspecific variation in traits like height, basal diameter, and salinity or
drought tolerance has been widely documented, particularly in N. alba and
N. flexuosa (Cony, 1996; Felker et al., 2008, Fontana et
al., 2018; Kong et al., 2023; Salazar et al., 2019).
Provenance trials across Argentina consistently demonstrate that
geographic origin significantly influences seedling performance in Neltuma
spp. Notably, populations from Catamarca (N. flexuosa; Bessega
et al., 2019; Cony, 1996; Mantovan, 2002; Massa et al., 2023),
Formosa, Salta and Chaco (N. alba; López et al.,
2001; Venier et al., 2021), have shown superior
growth and stress tolerance under both nursery and field conditions. These
findings are further supported by provenance trial data on superior performance
of specific Neltuma populations across multiple species and traits
relevant to restoration success (table 1).
Table 1. Seed
sources for restoration: evidence from Neltuma spp. trials.
Tabla 1. Orígenes
de semillas para la restauración: evidencia de los ensayos de Neltuma spp.

Recent studies highlight substantial adaptive variation across Neltuma
spp. Genome-wide analyses in N. alba have revealed the molecular
basis of key adaptive traits for selecting resilient genotypes (Kong
et al., 2023). N. alba shows high genetic diversity within
populations and moderate differentiation among them, with local adaptation
across morphotypes (Bessega et al., 2015; Pastorino
& Marchelli, 2021). The species also exhibits strong drought and salinity (Kong
et al., 2023; Velarde et al., 2003; Venier et al., 2021).
Heritability for traits such as height and pod production suggests good
potential for genetic improvement (Carreras et
al., 2017; Felker et al., 2001). Hybridization
with N. nigra and N. ruscifolia in contact zones contributes to
increased variability and adaptive potential (Vega et al.,
2020).
N. flexuosa displays strong
clinal variation in morphology and phenology along a north-south gradient, with
northern populations being taller and single-stemmed, and southern ones shorter
and multi-stemmed (Cony,
1996; Mantován, 2002; Massa et al., 2023; Villagra et al., 2005). Further, N.
flexuosa shows high intraspecific variation in salt tolerance during
germination (Cony
& Trione, 1998), and traits like leaflet size exhibit high heritability (Darquier
et al., 2013). Genetic differentiation and local adaptation have been
confirmed through SSR markers and QST-FST analyses (Bessega
et al., 2019; Darquier et al., 2013). Hybridization
with N. chilensis in sympatric zones further increases natural
variability (Bessega
et al., 2022; Vega et al., 2020).
N. ferox shows early signs
of genetic divergence among populations, with polymorphism in polypeptide
fractions and the presence of ecotypes likely driven by environmental pressure
and geographic isolation (Burghardt et al., 2004).
In contrast, N.
chilensis exhibits low genetic variation in foliar traits among provenances
(Bessega
et al., 2022) and weak adaptive responses to macro-environmental factors.
For instance, plants originating in greater longitudes were related to greater
frost sensitivity and lower initial growth rates, while higher altitude and
precipitation inversely correlated with frost sensitivity (Verzino
et al., 2003). The data suggest a general pattern where high intrapopulation
variation allows acclimatation, without major genetic alterations. (Verzino
et al., 2003). Microsatellite analyses show low but significant genetic
differentiation (Chequer
Charan et al., 2021), while chemical variability among populations suggests
potential for differentiation in secondary metabolites (Lamarque
& Guzmán, 1997). Additional studies have linked bud break phenology and
germination performance to geographic and environmental stress factors (Carranza
et al., 2000; Cony & Trione, 1998), supporting the potential for
genetic improvement through selection and breeding (Lamarque
& Guzmán, 1997).
A recent study
successfully designed and validated 12 provisional Seed Transfer Zones (STZs)
for N. alba in Argentina, aimed at supporting reforestation and
afforestation efforts while minimizing maladaptation risks (Orquera
et al., 2025). Researchers developed an Ecogeographic Land Characterization
(ELC) map based on bioclimatic, edaphic, and geophysical variables (Orquera
et al., 2025). The STZs were validated by showing strong concordance with
morphological groups derived from adaptive traits, indicating that
environmental factors significantly influence species’ adaptive characteristics
(Orquera
et al., 2025). This approach provides a robust and easy-to-apply tool for
germplasm collection and transfer, addressing the endangered genetic diversity
of N. alba due to deforestation (Orquera et al., 2025). Additionally,
the study identified gaps in existing germplasm collections, guidance for
future conservation efforts (Orquera et al., 2025).
Integrating
morphological and physiological knowledge about variation among provenances (Brizuela
et al., 2000; Mantovan, 2002) allows selection and breeding programs (Carreras
et al., 2017; Vega et al., 2020). However, many studies are
short-term and focus solely on nursery traits, without tracking long-term field
performance. Methodological inconsistencies in trial conditions or the use of
outdated genetic markers limit cross-study comparability, in addition to the
taxonomic and geographic bias, with research concentrated on a few species and
regions. Operational feasibility is also underexplored; few studies address
logistical or economic challenges of sourcing seeds from high-performing
provenances. These gaps challenge current recommendations and complicate the
development of scalable restoration strategies.
Early selection and breeding programs should prioritize traits
linked to survival under arid conditions, while also considering pod quality
and yield (Felker et al., 2001; Lopez
Maldonado et al., 2001). Thus, to ensure field
survival, seed source selection must consider ecological and operational
criteria like (I) expanding genomic resources to underrepresented species such
as N. ferox and N. ruscifolia; (II) standardizing protocols for
seed collection, storage, and evaluation; (III) integrating socioeconomic
considerations, including seed availability and cost-effectiveness; (IV)
linking nursery performance to field success through long-term monitoring.
Seed
Pre-treatment Methods for Enhanced Germination
Neltuma spp. are primarily
propagated through seeds, often exhibiting physical dormancy. In natural
ecosystems, frugivorous animals consume and disperse Neltuma spp. seeds. However, they do not inherently promote scarification
(Passera,
2000; Peinetti et al., 1993) and even decrease seed germination percentage (Pratolongo
et al., 2003). In fact, they may even reduce seed viability, particularly
for seeds that remain encapsulated within the pod or are only partially
digested (Peinetti
et al., 1993; Ortega Baes et al., 2002). As a result,
natural dispersal does not reliably enhance germination, and in nursery
settings, dormancy must be actively broken through mechanical or chemical
scarification to ensure uniform germination (Renzi et al., 2024; Vilela
& Rovetta, 2001).
Dormancy levels
vary significantly according to species, seed origin, harvest year, and within
seed lots, highlighting the need for species- and context-specific studies (Renzi et
al., 2024). For instance, in N. ferox, germination varies with
scarification method, each affecting seed coat permeability and seedling
emergence differently (Ortega Baes et al., 2002).
At nursery scale,
scarification treatments may be chemical or physical. Chemical methods, like
immersion in concentrated sulfuric acid, erode the hard seed coat and
facilitate water uptake. These methods are particularly effective for species
with strong dormancy, such as N. ruscifolia and N. alpataco (Abdala et
al., 2020; Boeri et al., 2019). Meanwhile, physical methods,
including nicking with a blade, abrasion with sandpaper, or soaking in hot
water, are effective for species like N. chilensis (Killian,
2012),
N. flexuosa, N. sericantha (Funes et al., 2009), N. alba, and
N. kuntzei (Bravo
et al., 2011; Vilela & Ravetta, 2001), being safer and
more practical for nursery-scale operations (Mathers et al., 2007).
Table 2
summarizes species-specific responses to various scarification techniques.
These data underscore treatment effectiveness across species and seed lots,
reinforcing the need for tailored protocols. For example, germination of N.
alba significantly increased after seed immersion in 100°C water for 24
hours (Salto et al., 2016).
Besides, mechanical scarification followed by soaking significantly increased
germination rates in N. flexuosa (Brizuela et
al., 2000), N. ruscifolia shows optimal germination after 3
minutes in concentrated sulfuric acid (Abdala et al.,
2020), and N. alpataco achieves high germination rates with a
30-minute acid treatment and complete cutting of the seed coat edge (Boeri
et al., 2019). By selecting the appropriate pre-treatment method, nursery
managers can significantly improve germination efficiency, uniformity, and
overall seedling quality.
Table 2. Effective
scarification techniques for Neltuma spp. seedling
production.
Tabla 2. Técnicas
efectivas de escarificación para Neltuma spp. en
la producción de plántulas.

Bold
font indicates treatments significantly increasing germination.
Los tratamientos
en negrita han aumentado significativamente la germinación.
This review
identifies several methodological limitations and inconsistencies in Neltuma
spp. seedlings propagation techniques. For
instance, germination trials often vary in experimental conditions like
temperature, light exposure, water quality, and seed storage duration,
hindering cross-study comparisons. While chemical scarification (especially
with sulfuric acid) is frequently cited as effective, few studies address its
operational risks, environmental impact, or feasibility in low-tech nursery
settings. Physical methods, though safer, often show variable effectiveness
depending on species and seed lots.
Moreover, the
response of Neltuma spp. to microbial or
enzymatic pre-germinative treatments has been poorly explored. These
eco-friendly approaches could offer sustainable solutions for large-scale
propagation (Zare
et al., 2011). Literature focuses on a few well-studied species, with
insufficient data on taxa like N. ruscifolia and N. alpataco, which
may have distinct dormancy mechanisms. Recent studies on endophytes in legumes
suggest that microbial interactions can enhance germination and seedling vigor
by enzymatically softening seed coats or hormonal signaling (Greeshma
et al., 2025). These approaches could offer sustainable, low-risk
alternatives to chemical scarification, particularly in low-tech nursery
settings.
In conclusion, seed
pre-treatment is a critical step in overcoming dormancy and ensuring uniform
germination in Neltuma spp. However, current practices remain poorly
integrated and highly species-specific. Future research should (I) develop
standardized and scalable protocols for species-specific seed sources, (II)
conduct comparative trials assessing both germination success and downstream
seedling performance, (III) explore and evaluate eco-friendly alternatives for
cost-effectiveness and operational feasibility. A more holistic and
evidence-based approach to seed pre-treatment will enhance efficiency, safety,
and sustainability of Neltuma seedling production for ecological
restoration in arid and semi-arid ecosystems.
Integrated
Effects of Container and Substrate on Seedling Development in Neltuma spp.
The interaction
between container and substrate often exceeds the sum of their contributions,
significantly influencing seedling growth and development in Neltuma spp.. (Salto et al., 2013, 2016). A high-quality
substrate may underperform in a poorly designed container, and vice versa (Salto et
al., 2016). Therefore, nursery design must consider both physico-chemical
and biological requirements.
Container design
should particularly consider volume, shape, and material (table 1,
supplementary material). These characteristics affect root architecture, water
dynamics, and operational efficiency (Mathers et al., 2007;
Senilliani et al., 2021). Choosing between bare root and container stock types also
affects seedling performance, with containerized systems often offering
advantages in survival and establishment under challenging site conditions (Grossnickle
& El-Kassaby, 2016). Moreover, morphological and physiological traits of N.
alba seedlings are highly responsive to nursery management, reinforcing the
importance of optimizing environmental and operational variables to enhance
plant quality (Senilliani
et al., 2021).
Substrate selection is critical for root development and
seedling vigour (table 2 in the supplementary material
for comparative data). Physical and chemical properties like porosity, water
retention, aeration and electrical conductivity directly influence root
development and nutrient uptake (Vence et al.,
2013; Vilela & Ravetta, 2001). Soil texture plays a
critical role in seedling growth rate of N. flexuosa, N. argentina and
N. alpataco when comparing clay versus
sandy soils (Villagra & Cavagnaro, 2000; Piraino
& Roig, 2024). Flooding-prone soils, like those with shallow clayey horizon
and high sodium content, can significantly decrease germination in N. nigra (Pratolongo
et al., 2003). Similarly, high electrical conductivity inhibits germination
in N. argentina and N. pallida (Velardem et
al., 2003; Villagra, 1997), and reduce germination
rates in N. alpataco, a species
adapted to salinity (Villagra, 1997).
Commonly used substrates include composted pine bark, perlite, peat, and
vermiculite, as well as locally available organic materials like vermicompost,
with strong potential to enhance seedling quality while reducing costs (Massa
et al., 2023; Mathers et al., 2007).
Table 3
illustrates how container–substrate combinations shape the morphological
quality of Neltuma seedlings (detailed container and substrate
specifications are provided in Tables 1 and 2, supplementary
material). Across trials, larger containers (e.g., 250-270 cm³)
consistently supported greater height, root collar diameter, and biomass
accumulation, particularly when paired with well-aerated substrates such as
composted pine bark mixed with perlite or vermiculite (Salto
et al., 2016; Senilliani et al., 2021).
Soil-based substrates also performed well, especially in multi-cell trays,
enhancing root collar diameter and overall seedling robustness (Salto
et al., 2013). These results show that container size and structure must
align with substrate properties like porosity and water retention, to support
optimal plant development (Salto et al.,
2016). Taller containers require substrates with higher water
retention, while shorter ones benefit from more aerated mixes (Mathers
et al., 2007). N. alba seedlings grown in 250 cm³ ribbed containers
filled with a 1:1 mix of composted pine bark and perlite achieved superior
height, root collar diameter, and biomass allocation (Senilliani
et al., 2021). Similarly, N. nigra performed best in seedling tubes
and multi-cell trays filled with soil or a 2:1:1 mix of pine bark, perlite, and
vermiculite. Soil consistently yielded the highest morphological quality (Salto
et al., 2013).
Table 3. Comparative
effects of container-substrate combinations on morphological traits in Neltuma
spp.
Tabla 3. Efectos
comparativos de las combinaciones de contenedor-sustrato sobre los rasgos
morfológicos en Neltuma spp.

TC
(Truncated cone with internal ribs), MCT (Multi-cell trays), IST (Individual
seedling tubes), TP (Total Porosity), AP (Aeration Porosity), WR (Water
retention).
TC (Cono
truncado con nervaduras internas), MCT (Bandejas multiceldas), IST (Tubos de
plántulas individuales), TP (Porosidad total), AP (Porosidad de aireación), WR
(Retención de agua).
Table 3, shows the best
results for high-porosity substrates (e.g., pine bark + perlite +
vermiculite) paired with 100-140 cm³ containers (Salto et al., 2016;
Senilliani et al., 2021). Soil-based substrates consistently produced the largest root
collar diameters, particularly in seedling tubes (Salto et al., 2013). These
interactions confirm that neither container nor substrate alone determines
seedling quality; rather, their combination must be optimized based on
species-specific responses. This reinforces the need for integrated nursery
planning, considering physical infrastructure and biological requirements.
Beyond physical
factors, the role of beneficial microbial interactions remains underexplored in
Neltuma spp. nursery systems. Mycorrhizal
associations can improve soil properties, like total biological activity,
electrical conductivity, pH, and organic matter content (Sagadin
et al., 2023; Salto et al., 2019, 2024). Multi-omic
approaches can help select microbial inoculants with particular functional
traits like growth promotion, abiotic stress tolerance, or improved nutrient
uptake (Greeshma
et al., 2025). Considering Neltuma spp., this technology could
improve inoculation efficiency and overall seedling quality.
Despite these
advances, several knowledge gaps remain. Few studies have tracked long-term
field performance, and economic analyses of substrate and container choices are
scarce (Oumahmoud
et al., 2023). Moreover, the role of microbial inoculants like mycorrhizal
fungi is underexplored. Future research should prioritize (I) long-term,
field-based evaluations to link nursery performance with restoration success,
(II) cost-benefit analyses to assess scalability and economic feasibility of
nursery practices, (III) integration of microbial inoculants to enhance seedling
vigor and stress tolerance, and (IV) assessment of synergistic effects among
bio-inoculants, substrates and container types.
Conclusion
Despite decades of
research on Neltuma species, implementing effective nursery production
techniques remains a challenge. Although breeding programs have identified
superior traits and seed sources, their application in nursery practices
remains limited due to poor standardised seed collection protocols, storage,
pre-germinative treatments, and seedling management.
This review
proposes several actionable insights ready to apply. For instance, nursery
operators can (I) select seed sources based on provenances with superior
performance under nursery and field conditions, (II) apply species-specific
pre-germinative treatments validated for N. alba, N. flexuosa,
and N. ruscifolia, and (III) optimize container-substrate combinations.
Furthermore, restoration planners and policymakers are encouraged to (I)
establish regional seed banks with documented provenance data, (II) promote
training programs to disseminate evidence-based nursery practices, and (III)
utilize ecogeographic tools such as Seed Transfer Zones (STZs) to guide
germplasm collection and minimize maladaptation risks.
Enhanced
propagation and restoration potential of Neltuma spp., should prioritize
(I) long-term field trials linking nursery performance with restoration
success, (II) integration of genomic tools beyond N. alba, (III) standardization
of nursery protocols across regions and species, (IV) exploration of biological
interactions, including microbial inoculants and (V) evaluation of economic
feasibility to guide scalable restoration strategies.
With coordinated action across science, practice, and policy, Neltuma
spp. can become a cornerstone of climate-resilient
restoration in arid and semi-arid ecosystems.
Acknowledgements
INTA EEA Junin, Mendoza, received funding in the first call for
the National Forest Restoration Plan framed in the ForestAr 2030 platform of
the National Ministry of Environment and Sustainable Development, Argentina.
Abdala, N. R.,
Bravo, S., & Acosta, M. (2020). Germinación y efectos del almacenamiento de
frutos de Prosopis ruscifolia (Fabaceae). Bosque (Valdivia), 41(2),
103-111. https://www.scielo.cl/ pdf/bosque/v41n2/0717-9200-bosque-41-02-103.pdf
Bessega, C.,
Pometti, C., Ewens, M., Saidman, B. O., & Vilardi, J. C. (2015). Improving
initial trials in tree breeding using kinship and breeding values estimated in
the wild: the case of Prosopis alba in Argentina. New Forests, 46,
427-448. https://doi.org/10.1007/s10342-016-0948-9
Bessega, C., Cony,
M., Saidman, B. O., Aguiló, R., Villagra, P., Alvarez, J. A., & Vilardi, J.
C. (2019). Genetic diversity and differentiation among provenances of Prosopis
flexuosa DC (Leguminosae) in a progeny trial: Implications for arid land
restoration. Forest Ecology and Management, 443, 59-68.
https://www.sciencedirect.com/science/article/pii/S0378112719302440
Bessega, C.,
Vilardi, J. C., Cony, M., Saidman, B., & Pometti, C. (2022). Low genetic
variation of foliar traits among Prosopis chilensis (Leguminosae)
provenances. Journal of Plant Research, 135(2), 221-234.
https://link.springer.com/article/10.1007/s10265-022-01378-9
Boeri P., Gazo M.
C., Barrio D., Failla M., Dalzotto, D., Sharry, S. (2019). Optimum germinative
conditions of a multipurpose shrub from Patagonia: Prosopis alpataco (Fabaceae).
Darwiniana, nueva serie, 7(2), 199-207. https://dx.doi.org/10.14522/darwiniana.2019.72.817
Braun Wilke, R. H.,
Picchetti, L. P., & Guzmán, G. F. (2000). Prosopis ferox gris:
Estado actual de su conocimiento. Multequina, 9(2), 19-34.
Bravo, S., Abdala,
R., Abraham, F., & Pece, M. (2011). Treatments to improve germination of Prosopis
kuntzei. Seed Technology, 55-62.
https://www.jstor.org/stable/45133802
Brizuela, M. M.,
Burghardt, A. D., Tanoni, D., & Palacios, R. A. (2000). Estudio de la
variación morfológica en tres procedencias de Prosopis flexuosa y su
manifestación en cultivo bajo condiciones uniformes. Multequina, 9(1),
7-15. https://www.scielo.org.ar/scielo.php?pid=S1852-
73292000000100002&script=sci_abstract&tlng=en
Burghardt, A. D.,
Espert, S. M., & Braun Wilke, R. H. (2004). Variabilidad genética en Prosopis
ferox (Mimosaceae). Darwiniana, nueva serie, 42(1-4), 31-36.
https://www.scielo.org.ar/scielo. php?pid=S0011-67932004000100003&script=sci_arttext&tlng=pt
Carranza, C.,
Verzino, G., Di Rienzo, J., Ledesma, M., & Joseau, J. (2000). Componentes
de la variación adaptativa en Prosopis chilensis: el índice de
brotación. Multequina, 9(1), 55-64. https://
www.scielo.org.ar/scielo.php?pid=S1852-73292000000100007&script=sci_arttext
Carreras, R.,
Bessega, C., López, C. R., Saidman, B. O., & Vilardi, J. C. (2017).
Developing a breeding strategy for multiple trait selection in Prosopis alba
Griseb., a native forest species of the Chaco Region in Argentina. Forestry:
An International Journal of Forest Research, 90(2), 199-210.
Cesca, E. M.,
Villagra, P. E., Passera, C., & Alvarez, J. A. (2012). Effect of Prosopis
flexuosa on understory species and its importance to pastoral management in
woodlands of the Central Monte Desert. Revista de la Facultad de Ciencias
Agrarias. Universidad Nacional de Cuyo, 44(2), 207-219. https://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/6305/5109
Chequer Charan, D.,
Pometti, C., Cony, M., Vilardi, J. C., Saidman, B. O., & Bessega, C.
(2021). Genetic variance distribution of SSR markers and economically important
quantitative traits in a progeny trial of Prosopis chilensis (Leguminosae):
implications for the ‘Algarrobo’ management programme. Forestry: An
International Journal of Forest Research, 94(2), 204- 218.
Cony, M. A. (1996).
Genetic variability in Prosopis flexuosa DC, a native tree of the Monte
phytogeographic province, Argentina. Forest Ecology and Management, 87(1-3),
41-49.
Cony, M. A., &
Trione, S. O. (1998). Inter- and intraspecific variability in Prosopis
flexuosa and P. chilensis: seed germination under salt and moisture
stress. Journal of Arid Environments, 40(3), 307-317.
Darquier, M. R.,
Bessega, C. F., Cony, M., Vilardi, J. C., & Saidman, B. O. (2013). Evidence
of heterogeneous selection on quantitative traits of Prosopis flexuosa (Leguminosae)
from multivariate QST– FST test. Tree Genetics & Genomes, 9,
307-320. https://link.springer.com/article/10.1007/ s11295-012-0556-x
Ewens, M., &
Felker, P. (2010). A comparison of pod production and insect ratings of 12
elite Prosopis alba clones in a 5-year semi-arid Argentine field trial. Forest
Ecology and Management, 260(3), 378-383.
Felker, P., Ewens,
M., Velarde, M., & Medina, D. (2008). Initial evaluation of Prosopis
alba Griseb clones selected for growth at seawater salinities. Arid Land
Research and Management, 22(4), 334-345.
Felker, P., Lopez,
C., Soulier, C., Ochoa, J., Abdala, R., & Ewens, M. (2001). Genetic
evaluation of Prosopis alba (algarrobo) in Argentina for cloning elite
trees. Agroforestry Systems, 53, 65-76.
https://link.springer.com/article/10.1023/A:1012016319629
Fontana, M., Pérez,
V., & Luna, C. (2018). Efecto del origen geográfico en la calidad
morfológica de plantas de Prosopis alba (Fabaceae). Revista de
Biología Tropical, 66(2), 593-604. https://
www.scielo.sa.cr/scielo.php?pid=S0034-77442018000200593&script=sci_arttext
Funes, G., Díaz,
S., & Venier, P. (2009). La temperatura como principal determinante de la
germinación en especies del Chaco seco de Argentina. Ecología austral, 19(2),
129-138.
Greeshma, K., Arutselvan, R., Teja, T. R., Baishnabi, D., &
Chaudhary, S. (2025). Endophytes and Microbiome: Modern Techniques in
Sustainable Crop. Multi-omics Approach to Investigate Endophyte Diversity,
103.
Grossnickle, S. C.,
& El-Kassaby, Y. A. (2016). Bareroot versus container stocktypes: a
performance comparison. New Forests, 47(1), 1-51.
Guzmán, A., Coronel
de Renolfi, M., & Pece, M. G. (2011). Determinación de fallas en la siembra
comercial de Algarrobo blanco (Prosopis alba) en un vivero de Santiago
del Estero. Quebracho (Santiago del Estero), 19(1), 46-53.
https://www.scielo.org.ar/scielo.php?pid=S1851-
30262011000100006&script=sci_arttext
Hughes, C. E.,
Ringelberg, J. J., Lewis, G. P., & Catalano, S. A. (2022). Disintegration
of the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid
clade). PhytoKeys, 205, 147. https://pmc.
ncbi.nlm.nih.gov/articles/PMC9849005/
Joseau, M. J.,
Rodriguez Reartes, S., & Frassoni, E. J. (2023). Advances in the Use of Neltuma
(ex Prosopis) Pods for Human and Animal Consumption. Pand their
properties for human and animal food. In M. Hasanuzzaman (Ed.), Production
and utilization of legumes - Progress and prospects. IntechOpen.
https://www.intechopen.com/chapters/86609
Killian, S. (2012).
Técnicas de germinación de Prosopis chilensis Moll Stuntz. Biología
en Agronomia.
Kong, W.; Wang, Y.;
Liu, Y.; Zhang, Y.; Zhang, Y.; Zhang, X. (2023). Genome and evolution of Prosopis
alba Griseb., a drought and salinity tolerant tree legume crop for arid
climates. Plants, People, Planet, 5(6), 933-947.
https://doi.org/10.1002/pei3.100
Lamarque, A. L.,
& Guzmán, C. A. (1997). Seed chemical variation in Prosopis chilensis from
Argentina. Genetic Resources and Crop Evolution, 44(6), 495-498.
Lerner, P., &
Peinetti, R. (1996). Importance of predation and germination on losses from the
seed bank of calden (Prosopis caldenia). Rangeland Ecology &
Management/Journal of Range Management Archives, 49(2), 147-150.
López, C.,
Maldonado, A., & Salim, V. (2001). Variación genética de progenies de Prosopis
alba. Investigación agraria. Sistemas y recursos forestales, 10(1),
59-68.
Mantovan, N. G.
(2002). Early growth differentiation among Prosopis flexuosa DC
provenances from the Monte phytogeographic province, Argentina. New Forests,
23, 19-30. https://link. springer.com/article/10.1023/A:1015608430967
Marone, L., Horno,
M. E., & Solar, R. G. D. (2000). Post‐dispersal fate of seeds in the Monte desert of Argentina:
patterns of germination in successive wet and dry years. Journal of Ecology,
88(6), 940-949.
Massa, A.;
Quagliariello, G.; Martinengo, N.; Calderón, A.; Pérez, S. 2023. Growth and
slenderness index in sweet algarrobo, Neltuma flexuosa, according to the
vermicompost percentage in the substrate and seed origin. Revista de la
Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 55(2): 12-19. DOI:
https://doi.org/10.48162/rev.39.105
Mathers, H. M., Lowe,
S. B., Scagel, C., Struve, D. K., & Case, L. T. (2007). Abiotic factors
influencing root growth of woody nursery plants in containers. HortTechnology,
17(2), 151-162.
Mazzuca, M., Kraus,
W., & Balzaretti, V. (2003). Evaluation of the biological activities of
crude extracts from Patagonian Prosopis seeds and some of their active
principles. Journal of herbal pharmacotherapy, 3(2), 31-37.
Milesi, F. A.,
& Lopez De Casenave, J. (2004). Unexpected relationships and valuable
mistakes: non‐myrmecochorous Prosopis dispersed by messy leafcutting
ants in harvesting their seeds. Austral Ecology, 29(5), 558-567.
Oliva, M., Alfaro,
C., & Palape, I. (2010). Evaluación del potencial tecnológico de
galactomananos del endospermo de semillas de Prosopis sp. para el uso en la industria de alimentos. Agriscientia,
27(2), 107-113. https://www.scielo.org.ar/scielo.php?pid=S1668-
298X2010000200006&script=sci_arttext
Orquera, R. M.;
Marinoni, L.; Velazquez, M. A.; Pensiero, J. F.; Lauenstein, D. L.; Vega, C.;
Zabala, J. M. (2025). Design of seed transfer zones and assessment of germplasm
collections of Neltuma alba for reforestation and afforestation purposes in
Argentina. New Forests, 56(1), 10.
https://link.springer.com/article/10.1007/s11056-024-10072-8
Ortega Baes, P., de
Viana, M. L., & Sühring, S. (2002). Germination in Prosopis ferox seeds:
effects of mechanical, chemical and biological scarificators. Journal of
arid environments, 50(1), 185-189.
https://www.sciencedirect.com/science/article/pii/S0140196301908596
Oumahmoud, M.;
Alouani, M.; Elame, F.; Tahiri, A.; Bouharroud, R.; Qessaoui, R.; El Boukhari,
A.; Mimouni, A.; Koufan, M. (2023). Effect of shading, substrate, and container
size on Argania spinosa growth and cost–benefit analysis. Agronomy, 13(10),
2451. https://doi. org/10.3390/agronomy13102451
Passera, C. B.
(2000). Fisiología de Prosopis spp. Multequina, 9(2), 53-80.
https://www.scielo.org.ar/ pdf/multeq/v9n2/v9n2a04.pdf
Pastorino, M. J.,
& Marchelli, P. (2021). Low Intensity Breeding of Native Forest Trees in
Argentina. Springer: Berlin/Heidelberg, Germany.
https://link.springer.com/content/pdf/10.1007/978-3- 030-56462-9.pdf
Peinetti, R., Pereyra, M., Kin, A., & Sosa, A. (1993).
Effects of cattle ingestion on viability and germination rate of calden (Prosopis
caldenia) seeds. Rangeland Ecology & Management/Journal of Range
Management Archives, 46(6), 483-486.
Pérez, D. R.,
Ceballos, C., & Oneto, M. E. (2022). Costos de plantación y siembra directa
de Prosopis flexuosa var. depressa (Fabaceae)
para restauración ecológica. Acta botánica mexicana, (129). https://
www.scielo.org.mx/scielo.php?pid=S0187-71512022000100500&script=sci_
arttext
Piraino, S.; Roig,
F. A. 2024. Landform heterogeneity drives multi-stemmed Neltuma flexuosa growth
dynamics. Implication for the Central Monte Desert forest management. Revista de la Facultad de Ciencias Agrarias.
Universidad Nacional de Cuyo. 56(1):
26-34. DOI: https://doi.org/10.48162/rev.39.120
Pratolongo, P.,
Quintana, R., Malvárez, I., & Cagnoni, M. (2003). Comparative analysis of
variables associated with germination and seedling establishment for Prosopis
nigra (Griseb.) Hieron and Acacia caven (Mol.) Mol. Forest
ecology and management, 179(1-3), 15-25.
Renzi, J. P.,
Quintana, M., Bruna, M., & Reinoso, O. (2024). Environmental drivers of
seed persistence and seedling trait variation in two Neltuma species
(Fabaceae). Seed Science Research, 1-8.
https://doi.org/10.1017/S0960258524000205
Sagadin, M. B.,
Salto, C. S., Cabello, M. N., & Luna, C. M. (2023). Respuesta micorrícica a
la aplicación de inóculos de hongos micorrícicos arbusculares nativos en
simbiosis con Neltuma alba. Revista de Ciencias Forestales, 31,
1-2.
Salazar, P. C.,
Navarro-Cerrillo, R. M., Cruz, G., Grados, N., & Villar, R. (2019).
Variability in growth and biomass allocation and the phenotypic plasticity of
seven Prosopis pallida populations in response to water availability. Trees,
33, 1409-1422. https://link.springer.com/ article/10.1007/s00468-019-01868-9
Salto, C. S.,
García, M. A., & Harrand, L. (2013). Influencia de diferentes sustratos y
contenedores sobre variables morfológicas de plantines de dos especies de Prosopis.
Quebracho (Santiago del Estero), 21(2), 90-102.
Salto, C. S.,
Harrand, L., Javier Oberschelp, G. P., & Ewens, M. (2016). Crecimiento de
plantines de Prosopis alba en diferentes sustratos, contenedores y
condiciones de vivero. Bosque (Valdivia), 37(3), 527-537.
https://www.scielo.cl/scielo.php?pid=S0717-
92002016000300010&script=sci_arttext
Salto, C. S.,
Melchiorre, M., Oberschelp, G. P. J., Pozzi, E., & Harrand, L. (2019).
Effect of fertilization and inoculation with native rhizobial strains on growth
of Prosopis alba seedlings under nursery conditions. Agroforestry
Systems, 93, 621-629. https://link.springer.com/
article/10.1007/s10457-017-0156-8
Salto, C. S.,
Sagadin, M. B., & Harrand, L. (2024). Inoculación de Neltuma alba con
hongos micorrícicos arbusculares: efectos sobre el crecimiento y las variables
edáficas en Entre Ríos, Argentina. Bosque (Valdivia), 45(2),
283-294.
Scaglia, J. A.;
Flores, D. G.; Tapia, R.; Martinell, M. (2024). Effects of geomorphology and
distribution of water sources for livestock on the floristic composition and
livestock receptivity of the Arid Chaco. Revista
de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. 56(1): 12-25. DOI:
https://doi.org/10.48162/rev.39.119
Senilliani, M. G.,
Acosta, M., Oliet, J., & Brassiolo, M. (2021). Atributos morfológicos y
fisiológicos de Prosopis alba Griseb en vivero con diferentes sustratos
y contenedores. Quebracho (Santiago del Estero), 29(2), 92-101.
https://www.scielo.org.ar/scielo.php?pid =S1851-30262021000200092
Vega, C., Teich,
I., Acosta, M. C., Lopez Lauenstein, D., Verga, A., & Cosacov, A. (2020).
Morphological and molecular characterization of a hybrid zone between Prosopis
alba and P. nigra in the Chaco region of northwestern Argentina. Silvae
Genetica, 69, 44-54. https://sciendo.com/ pdf/10.2478/sg-2020-0007
Velarde, M.,
Felker, P., & Degano, C. (2003). Evaluation of Argentine and Peruvian Prosopis
germplasm for growth at seawater salinities. Journal of Arid
Environments, 55(3), 515-531.
Vence, L. B.
(2008). Disponibilidad de agua-aire en sustratos para plantas. Ciencia del
suelo, 26(2), 105-114.
Vence, L. B.,
Valenzuela, O. R., Svartz, H. A., & Conti, M. E. (2013). Elección del
sustrato y manejo del riego utilizando como herramienta las curvas de retención
de agua. Ciencia del suelo, 31(2), 153- 164.
https://www.scielo.org.ar/scielo.php?pid=S1850-20672013000200002&script=sci_
arttext
Venier, P., Funes,
G., Teich, I., López Lauenstein, D., & Lascano, R. (2021). Provenance
matters: variability under saline stress in young plants of four populations of
a Prosopis (mesquite) species from dry forests of Argentina. Canadian
Journal of Forest Research, 51(9), 1263-1270.
Venier, P.,
Ferreras, A. E., Lauenstein, D. L., & Funes, G. (2023). Nurse plants and
seed provenance in the restoration of dry Chaco forests of central Argentina. Forest
Ecology and Management, 529, 120638.
https://www.sciencedirect.com/science/article/pii/S0378112722006326
Verzino, G.,
Carranza, C., Ledesma, M., Joseau, J., & Di Rienzo, J. (2003). Adaptive
genetic variation of Prosopis chilensis (Mol) Stuntz: Preliminary results from
one test-site. Forest ecology and Management, 175(1-3), 119-129.
Vilela, A. E.,
& Ravetta, D. A. (2001). The effect of seed scarification and soil-media on
germination, growth, storage, and survival of seedlings of five species of Prosopis
L. (Mimosaceae). Journal of Arid Environments, 48(2),
171-184.
Vilela, A. E., & Ravetta, D. A. (2005). Gum exudation in
South-American species of Prosopis L. (Mimosaceae). Journal of arid
environments, 60(3), 389-395.
https://www.sciencedirect.com/science/article/pii/S0140196304001302
Villagra, P. E.
(1997). Germination of Prosopis argentina and P. alpataco seeds
under saline conditions. Journal of Arid Environments, 37(2),
261-267.
Villagra, P. E.,
& Cavagnaro, J. B. (2000). Effects of clayish and sandy soils on the growth
of Prosopis argentina and P. alpataco seedlings. Ecología
Austral, 10(2), 113-121.
Villagra, P. E.,
Marone, L., & Cony, M. A. (2002). Mechanisms affecting the fate of Prosopis
flexuosa (Fabaceae, Mimosoideae) seeds during early secondary dispersal in
the Monte Desert, Argentina. Austral Ecology, 27(4), 416-421.
Villagra, P. E.,
Boninsegna, J. A., Alvarez, J. A., Cony, M., Cesca, E., & Villalba, R.
(2005). Dendroecology of Prosopis flexuosa woodlands in the Monte
desert: Implications for their management. Dendrochronologia, 22(3),
209-213.
Zare, S., Tavili, A., & Darini, M. J. (2011). Effects of
different treatments on seed germination and breaking seed dormancy of Prosopis
koelziana and Prosopis juliflora. Journal of Forestry Research, 22,
35-38. https://link.springer.com/article/10.1007/s11676-011-0121-8