Impacto edilicio y del arbolado sobre el índice de vegetación en el área metropolitana de Mendoza, Argentina.

Autores/as

  • Mariela Edith Arboit Instituto de Ciencias Humanas, Sociales y Ambientales. Centro Científico Tecnológico. Mendoza, Argentina.
  • Dora Maglione Instituto de Trabajo, Economía y Territorio - Universidad Nacional de la Patagonia Austral, Rio Gallegos, Argentina.

Palabras clave:

infraestructura verde urbana, edificación, SIG, teledetección

Resumen

El trabajo estudia las relaciones entre el índice de vegetación de diferencia normalizada (NDVI), la huella edilicia (HE), el Factor Edilicio Total (FET) y las variables del arbolado urbano "completamiento" y "transmisividad" en el área metropolitana de Mendoza (AMM).

Metodológicamente se determinaron los índices y variables en sistemas de información geográfica del análisis de: imágenes satelitales Landsat 8 (2013-2017), datos catastrales urbano-edilicios (2010) y datos del censo del arbolado público (2012). Posteriormente, se realizó un análisis estadístico de estimación de correlaciones.

Los resultados obtenidos indican un impacto negativo de la HE y del FET sobre el NDVI, en las diversas estaciones del año y los distintos departamentos, para la totalidad de los años de estudio.

Considerando los resultados de las manzanas urbanas de Capital, el completamiento del arbolado en la vía pública es la variable más relevante para mejorar el índice de vegetación; HE, FET y trasmisividad tienen un impacto negativo. La mejora en los valores de NDVI en las manzanas ya consolidadas con altos valores HE y FET debería considerar la incorporación de nuevas infraestructuras verdes como cubiertas y muros vegetados; ya que el arbolado urbano existente no alcanza a compensar el impacto edilicio sobre el índice de vegetación.

Citas

AHIABLAME, L.; ENGEL, B. y CHAUBEY, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut., vol. 223, issue 7, pp. 4253-4273. DOI: https://doi.org/10.1007/s11270-012-1189-2

AKBARI, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution. vol. 116, issue 1, pp. 119-126

ARBOIT, M. y BETMAN, E. (2014). Solar radiation availability in forest urban environments with dry climate. Case: Mendoza Metropolitan Area, Argentina. Proceedings of the 30th International PLEA Conference. Ahmedabad, India.

ARBOIT, M. y BETMAN, E. (2017). Evaluation of the impact of green area surfaces and vegetation cover in forested urban environments with dry climates. Case: Mendoza Metropolitan Area, Argentina. Procedia Environmental Sciences, vol. 37, pp. 112 – 130. DOI: https://doi.org/10.1016/j.proenv.2017.03.027

ARBOIT, M. y MAGLIONE, D. (2018 a). Análisis multitemporal y multiespacial del índice de vegetación de diferencia normalizada (NDVI) y del índice de vegetación ajustado al suelo (SAVI) en centros urbanos forestados y oasis irrigados, con climas seco. Boletín de Estudios Geográficos, vol. 109, pp. 13-60. DOI: http://bdigital.uncu.edu.ar/11458

ARBOIT, M. y MAGLIONE, D. (2018 b). Situación actual y cambios recientes en los índices de vegetación (vis) en ciudades forestadas con climas secos. Caso área metropolitana de Mendoza, Argentina. Urbano, vol. 21, issue 38, pp. 18-35. DOI: https://doi.org/10.22320/07183607.2018.21.38.02

ARBOIT, M. (2013). Permeabilidad del arbolado urbano a la radiación solar: Estudio de dos especies representativas en entornos urbanos de baja densidad del Área Metropolitana de Mendoza, Argentina. Revista Hábitat Sustentable, vol. 3, issue 2, pp. 3-18.

ARBOIT, M.; DIBLASI, A.; FERNÁNDEZ LLANO, J. y DE ROSA, C. (2008). Assessing the solar potential of low density urban environments in Andean cities with desert climates - The case of the city of Mendoza, in Argentina. Renewable Energy, vol. 33. issues 8, pp. 1733-1748. DOI: doi:10.1016/j.renene.2007.11.007

BARBOSA, O.; TRATALOS, J.; ARMSWORTLI, P.; DAVIES, R.; FUELLER, R.; PAT, J. y GASTON, K. (2007). Who benefits with access from green space? A case study from Sheffield UK. Landscape and Urban Planning, vol. 83, pp.187-195. DOI: doi:10.1016/j.landurbplan.2007.04.004

BECKETT, K.; FREER-SMITH, P. y TAYLOR, G. (2000). Effective tree species for local air quality management. Journal of Arboriculture, vol. 26, pp.12–19

CANTÓN, M.; CORTEGOSO, J. y DE ROSA, C. (1994). Solar permeability of urban trees in cities of western Argentina. Energy y Buildings, vol. 20, issue 3, pp. 219-230. DOI: https://doi.org/10.1016/0378-7788(94)90025-6

CANTÓN, M.; MESA, A.; CORTEGOSO, J. y DE ROSA, C. (2003). Assessing the solar resource in forested urban environments: results from the use of a photographic-computational method. Architectural Science Review, vol. 46, issues 2, pp. 115-123. DOI: https://doi.org/10.1080/00038628.2003.9696973

CAPELUTO, I. y SHAVIV, E. (2001). On the use of 'solar volume' for determining the urban fabric. Solar Energy, vol. 70, issue 3, pp. 275-280. DOI: https://doi.org/10.1016/S0038-092X(00)00088-8

CAPELUTO, I.; YEZIORO, A.; BLEIBERG, T. y SHAVIV, E. (2006). Solar Rights in the Design of Urban Spaces. Comunicación presentada en la 23rd Conference on Passive and Low Energy Architecture.

CARRETERO, E.; MORENO, G.; DUPLANCIC, A.; ABUD, A.; VENTO, B. y JAUREGUI, J. (2017). Urban forest of Mendoza (Argentina): the role of Morus alba (Moraceae) in carbon storage. Carbon Management, vol. 1, issues 3, pp. 1-8. DOI: http://dx.doi.org/10.1080/17583004.2017.1309206

CARRIERI, S.; VESPA, M. J.; CODINA, R.; KOCSIS, C.; MANZANO, E.; FERRO, M.; MALECKI VIDELA, E. y FIORETTI, S. (2009). Propuesta de metodología para la calificación bio-ambiental de espacios verdes mediante coeficientes ecofisiológicos. Revista de la Facultad de Ciencias Agrarias, vol. XLI, issue 1, pp.1-21.

CORREA, E. (2008). Tesis Doctoral: Isla de Calor Urbana – El caso del Área Metropolitana de Mendoza. Universidad Nacional de Salta.

COUTTS, C. y HAHN, M. (2015). Green infrastructure, ecosystem services, and human health. International Journal of Environmental Research and Public Health, vol. 12, pp. 9768-9798. DOI: 10.3390/ijerph120809768

DAVIS, A.; JUNG, J.; PIJANOWSKI, B. y MINOR, E. (2016). Combined vegetation volume and “greenness” affect urban air temperatura. Applied Geography, vol. 71, pp. 106-114. DOI: 10.1016/j.apgeog.2016.04.010

DIRECCIÓN GENERAL DE CATASTRO- MENDOZA [en línea]. [Consultado 1 junio 2010]. Disponible en: https://www.atm.mendoza.gov.ar/portalatm/zoneTop/catastro/ catastro.jsp

EARTH OBSERVATION GROUP (EOG). NOAA NATIONAL GEOPHYSICAL DATA CENTER [en línea]. [Consultado 15 enero 2017]. Disponible en: https://ngdc. noaa.gov/eog/night_sat/nightsat.html

ELLINGSWORTH, D.; BINKLEY, M.; y MACO, S. (2016). I-Tree. I-Tree Canopy Technical Notes. Disponible en: www.itreetools.org

ELMQVIST, T.; FRAGKIAS, M.; GOODNESS, J.; GÜNERALP, B.; MARCOTULLIO, P.J.; MCDONALD, R.I.; PARNELL, S.; SCHEWENIUS, M.; SENDSTAD, M.; SETO, K.C. y WILKINSON, C. (Eds.). (2013). Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer Netherlands. DOI: https://doi.org/10.1007/978-94-007-7088-1

ELMQVIST, T.; SETALA, H.; HANDEL, S.; VAN DER PLOEG, S.; ARONSON, J.; BLIGNAUT, J.; GOMEZ-BAGGETHUN, E.; NOWAK, D.; KRONENBERG, J. y DE GROOT, R. (2015). Benefits of restoring ecosystem services in urban areas. Current Opinions in Environmental Sustainability, vol. 14, pp: 101-108. DOI: https://doi.org/10.1016/j.cosust.2015.05.001

ESCOBEDO, F.; ADAMS, D. y TIMILSINA, N. (2015). Urban forest structure effects on property value. Ecosystem Services, vol. 12, pp. 209–217. DOI: 10.1016/j.ecoser.2014.05.002

GIVONI, B. (1998). Climate considerations in building and urban design. John Wiley y Sons, Inc., USA.

GÓMEZ-MUÑOZ, V. y FERNÁNDEZ, L. (2010). Effect of tree shades in urban planning in hot-arid climatic regions. Landscape and Urban Planning, vol. 94, issues 3–4, pp. 149-157. DOI: https://doi.org/10.1016/j.landurbplan.2009.09.002

HAIDER, T. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, vol. 25, issue 2, pp. 99-103. DOI: https://doi.org/10.1016/S0378-7788(96)00999-1

HEISLER, G. (1986). Effects of individual trees on the solar radiation climate of small buildings. Urban Ecology, vol. 9, issues 3–4, pp. 337-359. DOI: https://doi.org/10.1016/0304-4009(86)90008-2

HOLTAN, M.; DIETERLEN, S. y SULLIVAN W. (2014). Social life under cover: tree canopy and social capital in Baltimore, Maryland. Environment and Behavior, vol. 47, pp. 502–525. DOI: https://doi.org/10.1177/0013916513518064

HUETE, A.; JACKSON, R. y POST, D. (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, vol. 17, pp. 37-53. DOI: https://doi.org/10.1016/0034-4257(85)90111-7

JENNINGS, V. y BAMKOLE, O. (2019). The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. International Journal of Environmental. Research and Public Health, vol. 16, issue 3, 452. DOI: 10.3390/ijerph16030452

KAMMEN, D. y SUNTER, D. (2016). City-integrated renewable energy for urban sustainability. Science, vol. 352, issue 6288, pp. 922-928. DOI: 10.1126/science.aad9302

KASPERSEN, P.; FENSHOLT, R. y DREWS, M. (2015). Using Landsat vegetation indices to estimate impervious surface fractions for European Cities. Remote Sensing, vol. 7, pp. 8224-8249. DOI: https://doi.org/10.3390/rs70608224

KO, Y. (2018). Trees and vegetation for residential energy conservation: A critical review for evidence-based urban greening in North America. Urban Forestry y Urban Greening, vol. 34, pp. 318-335. DOI: https://doi.org/10.1016/j.ufug.2018.07.021

LING TANG, L. y ZHANG, G. (2013). The Pattern and Gradient Analysis of Urban Green Space in Shenyang, China. Communications in Information Science and Management Engineering, vol. 3, issues 2, pp. 112-122.

LIU, W., CHEN, W. y PENG, C. (2014). Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecological Modelling, vol. 291, pp. 6-14. DOI: 10.1016/j.ecolmodel.2014.07.012

LOCKE D. y MCPHEARSON T. (2018). Urban areas do provide ecosystem services. Frontiers in Ecology and the_Environment, vol.16, issue 4, pp. 203-205. DOI: https://doi.org/10.1002/fee.1796

LOCKE, D.; KING, K.; SVENDSEN, E.; CAMPBELL, L.; SMALL, C.; SONTI, N.; FISHER D. y LU J. (2014). Urban environmental stewardship and changes in vegetative cover and building footprint in New York City neighborhoods (2000–2010). Journal of Environmental Studies and Sciences, vol. 4, .issue 3, pp 250–262. DOI: https://doi.org/10.1007/s13412-014-0176-x

LOCKE,D.; LANDRY, S.; GROVE, J. y CHOWDHURY, R. (2016). What’s scale got to do with it? Models for urban tree canopy. Journal of Urban Ecology, vol. 2, issue 1, pp. 1-16. DOI: 10.1093/jue/juw006

MARTINUZZI, S.; RAMOS-GONZALES, O.; MUÑOZ-ERICKSON, T.; LOCKE, D.; LUGO A. y RADELOFF V. (2017). Vegetation cover in relation to socioeconomic factors in a tropical city assessed from sub-meter resolution imagery. Ecological Applications, vol. 28, issue 3, pp. 681–693. DOI: https://doi.org/10.1002/eap.1673.

MCPERSON, G. y SIMPSON, J. (2003). Potential energy savings in buildings by an urban tree planting programme in California. Urban Forestry y Urban Greening, vol. 2, pp. 73–86. DOI: https://doi.org/10.1078/1618-8667-00025

MCPHERSON, E.G.; XIAOB, Q.; VAN DOORNC, N.S.; DE GOEDED, J.; BJORKMAND, J.; HOLLANDERD, A.; BOYNTOND, R.; QUINND, J. y THORNE, J. (2017). The structure, function and value of urban forests in California communities. Urban Forestry y Urban Greening, vol. 28, pp. 43–53.

MEERA GANDHI, G. y CHRISTY, A. (2015). Ndvi: Vegetation change detection using remote sensing and gis – A case study of Vellore District. Procedia Computer Science, vol. 57, pp. 1199–1210. DOI: https://doi.org/10.1016/j.procs.2015.07.415

MICHELS, C. y GÜTHSB, S. (2008). Evaluation of heat flux reduction provided by the use of radiant barriers in clay tile roofs. Energy and Buildings, vol.40, issue 4, pp. 445-451. DOI: https://doi.org/10.1016/j.enbuild.2007.03.013

MONTEITH, J. y UNSWORTH, M. (1990). Principles of Environmental Physics, 2da ed.Edward Arnold, Londres.

MORELLO, E. y RATTI, C. (2009). Sunscapes: ‘solar envelopes’ and the analysis of urban DEMs. Massachusetts: Massachusetts Institute of Technology. Computers, Environment and Urban Systems, vol 33, issue 1, pp. 26-34. DOI: 10.1016/j.compenvurbsys.2008.09.005

MUNICIPALIDAD DE CAPITAL [en línea]. [Consultado 4 noviembre 2017]. Disponible en: http://www.ciudaddemendoza.gov.ar

NOWAK, D.; CRANE, D. y STEVENS, J. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry y Urban Greening, vol. 4, pp. 115-123. DOI: https://doi.org/10.1016/j.ufug.2006.01.007

NOWAK, D.; HOEHN III, R.; CRANE, D.; STEVENS, J. y WALTON, J. (2007). Assessing urban forest effects and values, Philladelphia’s urban forest. Resour. Bull. NRS-7. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 22 p. DOI: https://doi.org/10.2737/NRS-RB-7

NOWAK, D.; HOEHN, R.; BODINE, A.; GREENFIELD, E. y O’NEIL-DUNNE, J. (2013). Urban forest structure, ecosystem services and change in Syracuse, NY. Urban Ecosyst, vol. 19, pp.1–23. DOI: https://doi.org/10.1007/s11252-013-0326-z.

OKE, T. (1988). The urban energy balance. Progress in Physical Geography: Earth and Environment, vol. 12, pp. 471–508. DOI: https://doi.org/10.1177/030913338801200401

OWENS, S. (1986). Energy planning and urban form. London: Pion Ltd.

PATHAK, V.; TRIPATHI B. y MISHRA V. (2011). Evaluation of Anticipated Performance Index of some tree species for green belt development to mitigate traffic generated noise. Urban Forestry y Urban Greening, vol.10, pp. 61-66. DOI: https://doi.org/10.1016/j.ufug.2010.06.008

PEARLMUTTER, D.; BITAN, A. y BERLINER, P. (1999). Microclimatic analysis of “compact” urban canyons in arid zone. Atmospheric Environment, vol. 33, pp. 4143-4150.DOI: https://doi.org/10.1016/S1352-2310(99)00156-9

PULIAFITO S., GUEVARA M. y PULIAFITO C. (2003). Characterization of urban air quality using GIS as a management system. Environmental Pollution, vol. 122, issue 1, pp.105-117. DOI: 10.1016/S0269-7491(02)00278-6

REDDY, C. y HARINARAYANA, T. (2015). Solar Thermal Energy Generation Potential in Gujarat and Tamil Nadu States, India. Energy and Power Engineering, vol. 7, issue 13, pp. 591-603. DOI: http://dx.doi.org/10.4236/epe.2015.713056

ROTH, M. (2013). Urban Heat Islands. Handbook of Environmental Fluid Dynamics, vol. 2, pp. 143- 159.

ROUSE, J.; HAAS, R.; DEERING, D., SCHELL, J. y HARLAN, J. (1974). Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation, Final Report. Texas: A y M Universiy.

RUDD, H.; VALA, J. y SCHAEFER, V. (2002). Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restoration Ecology, vol 10, pp. 368–375. DOI: https://doi.org/10.1046/j.1526-100X.2002.02041

SANTAMOURIS, M.; HADDAD, S.; SALIARI, M.; VASILAKOPOULOU, K.; SYNNEFA, A.; PAOLINI, R.; ULPIANI, G.; GARSHHASBI, S. y FIORITO, F. (2018). On the energy impact of urban heat island in Sydney. Climate and energy potential of mitigation technologies. Energy and Buildings, vol. 166, pp. 154-164. DOI: https://doi.org/10.1016/j.enbuild.2018.02.007

SANTANA-RODRÍGUEZ, L.; ESCOBAR-JARAMILLO, L. y CAPOTE, P. (2010). Estimación de un índice de calidad ambiental urbano, a partir de imágenes de satélite. Revista de Geografía Norte Grande, vol. 45, pp. 77-95. DOI: http://dx.doi.org/10.4067/S0718-34022010000100006

SHAHABI, H.; AHMAD, B.; MOKHTARI, M. y ALI ZADEH, M. (2012). Detection of urban irregular development and green space destruction using normalized difference vegetation index (NDVI), principal component analysis (PCA) and post classification methods: A case study of Saqqez city. International Journal of the Physical Sciences, vol. 7, issue 17, pp. 2587-2595. DOI: https://doi.org/10.5897/IJPS12.009

TAVARES, P.; BELTRÃO, N.; SILVA GUIMARÃES, U.; TEODORO, A. y GONÇALVES, P. (2019). Urban Ecosystem Services Quantification through Remote Sensing Approach: A Systematic Review. Environments, vol. 6, issue 5, pp. 51-66. DOI: https://doi.org/10.3390/environments6050051

TAYLOR, L. y HOCHULI, D. (2015). Creating better cities: how biodiversity and ecosystem functioning enhance urban residents' wellbeing. Urban Ecosystems, vol. 18, issue 3, pp. 747-762. DOI: 10.1007/s11252-014-0427-3

UNITED STATES GEOLOGICAL SURVEY (USGS), EARTHEXPLORER [en línea]. [Consultado 20 septiembre 2016]. Disponible en: https://earthexplorer.usgs. gov/

WEBER, C. (2013). Ecosystem Services Provided by Urban Vegetation: A Literature Review. In: Rauch S., Morrison G., Norra S., Schleicher N. (Eds). Urban Environment. DOI: https://doi.org/10.1007/978-94-007-7756-9_10

ZHOU, W., TROY, A. y GROVE, M. (2008). Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data. Sensors, vol. 8, pp.1613–1636. DOI: 10.3390/s8031613

ZITER, C. (2016). The biodiversity-ecosystem service relationship in urban areas: a quantitative review. Oikos, vol. 125, pp. 761-768. DOI: https://doi.org/10.1111/oik.02883

Descargas

Publicado

01-12-2019

Cómo citar

Arboit, M. E., & Maglione, D. . (2019). Impacto edilicio y del arbolado sobre el índice de vegetación en el área metropolitana de Mendoza, Argentina. Proyección. Estudios Geográficos Y De Ordenamiento Territorial, 13(26), 5–40. Recuperado a partir de https://revistas.uncu.edu.ar/ojs3/index.php/proyeccion/article/view/2836