Impact of Buildings and Trees on the Vegetation Index in the Metropolitan Area of Mendoza, Argentina.
Keywords:
urban green infrastructure, building, GIS, remote sensingAbstract
This work analyzes the relationships between the normalized difference vegetation index (in Spanish, NDVI), the building footprint (in Spanish, HE), the total building factor (in Spanish, FET) and the variables of urban trees "completeness" and "transmission" in the Metropolitan Area of Mendoza (in Spanish, AMM).
Methodologically, the indices and variables in geographic information systems were determined from the analysis of Landsat 8 satellite images (2013-2017), urban cadastral data (2010), and data from the public tree census (2012). Subsequently, a statistical analysis of the estimation of correlations was carried out.
The results obtained indicate a negative impact of the HE and the FET on the NDVI, in the different seasons of the year and the different municipal departments, for all the years of study.
Considering the results of the urban blocks of Capital, the completion of the trees in the public road is the most relevant variable to improve the vegetation index; HE, FET, and transmission have a negative impact. In the improvement in NDVI values in blocks already consolidated with high HE and FET values there should considered the incorporation of new green infrastructures such as vegetated roofs and walls, since the existing urban trees does not compensate for the building impact on the vegetation index.
References
AHIABLAME, L.; ENGEL, B. y CHAUBEY, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut., vol. 223, issue 7, pp. 4253-4273. DOI: https://doi.org/10.1007/s11270-012-1189-2
AKBARI, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution. vol. 116, issue 1, pp. 119-126
ARBOIT, M. y BETMAN, E. (2014). Solar radiation availability in forest urban environments with dry climate. Case: Mendoza Metropolitan Area, Argentina. Proceedings of the 30th International PLEA Conference. Ahmedabad, India.
ARBOIT, M. y BETMAN, E. (2017). Evaluation of the impact of green area surfaces and vegetation cover in forested urban environments with dry climates. Case: Mendoza Metropolitan Area, Argentina. Procedia Environmental Sciences, vol. 37, pp. 112 – 130. DOI: https://doi.org/10.1016/j.proenv.2017.03.027
ARBOIT, M. y MAGLIONE, D. (2018 a). Análisis multitemporal y multiespacial del índice de vegetación de diferencia normalizada (NDVI) y del índice de vegetación ajustado al suelo (SAVI) en centros urbanos forestados y oasis irrigados, con climas seco. Boletín de Estudios Geográficos, vol. 109, pp. 13-60. DOI: http://bdigital.uncu.edu.ar/11458
ARBOIT, M. y MAGLIONE, D. (2018 b). Situación actual y cambios recientes en los índices de vegetación (vis) en ciudades forestadas con climas secos. Caso área metropolitana de Mendoza, Argentina. Urbano, vol. 21, issue 38, pp. 18-35. DOI: https://doi.org/10.22320/07183607.2018.21.38.02
ARBOIT, M. (2013). Permeabilidad del arbolado urbano a la radiación solar: Estudio de dos especies representativas en entornos urbanos de baja densidad del Área Metropolitana de Mendoza, Argentina. Revista Hábitat Sustentable, vol. 3, issue 2, pp. 3-18.
ARBOIT, M.; DIBLASI, A.; FERNÁNDEZ LLANO, J. y DE ROSA, C. (2008). Assessing the solar potential of low density urban environments in Andean cities with desert climates - The case of the city of Mendoza, in Argentina. Renewable Energy, vol. 33. issues 8, pp. 1733-1748. DOI: doi:10.1016/j.renene.2007.11.007
BARBOSA, O.; TRATALOS, J.; ARMSWORTLI, P.; DAVIES, R.; FUELLER, R.; PAT, J. y GASTON, K. (2007). Who benefits with access from green space? A case study from Sheffield UK. Landscape and Urban Planning, vol. 83, pp.187-195. DOI: doi:10.1016/j.landurbplan.2007.04.004
BECKETT, K.; FREER-SMITH, P. y TAYLOR, G. (2000). Effective tree species for local air quality management. Journal of Arboriculture, vol. 26, pp.12–19
CANTÓN, M.; CORTEGOSO, J. y DE ROSA, C. (1994). Solar permeability of urban trees in cities of western Argentina. Energy y Buildings, vol. 20, issue 3, pp. 219-230. DOI: https://doi.org/10.1016/0378-7788(94)90025-6
CANTÓN, M.; MESA, A.; CORTEGOSO, J. y DE ROSA, C. (2003). Assessing the solar resource in forested urban environments: results from the use of a photographic-computational method. Architectural Science Review, vol. 46, issues 2, pp. 115-123. DOI: https://doi.org/10.1080/00038628.2003.9696973
CAPELUTO, I. y SHAVIV, E. (2001). On the use of 'solar volume' for determining the urban fabric. Solar Energy, vol. 70, issue 3, pp. 275-280. DOI: https://doi.org/10.1016/S0038-092X(00)00088-8
CAPELUTO, I.; YEZIORO, A.; BLEIBERG, T. y SHAVIV, E. (2006). Solar Rights in the Design of Urban Spaces. Comunicación presentada en la 23rd Conference on Passive and Low Energy Architecture.
CARRETERO, E.; MORENO, G.; DUPLANCIC, A.; ABUD, A.; VENTO, B. y JAUREGUI, J. (2017). Urban forest of Mendoza (Argentina): the role of Morus alba (Moraceae) in carbon storage. Carbon Management, vol. 1, issues 3, pp. 1-8. DOI: http://dx.doi.org/10.1080/17583004.2017.1309206
CARRIERI, S.; VESPA, M. J.; CODINA, R.; KOCSIS, C.; MANZANO, E.; FERRO, M.; MALECKI VIDELA, E. y FIORETTI, S. (2009). Propuesta de metodología para la calificación bio-ambiental de espacios verdes mediante coeficientes ecofisiológicos. Revista de la Facultad de Ciencias Agrarias, vol. XLI, issue 1, pp.1-21.
CORREA, E. (2008). Tesis Doctoral: Isla de Calor Urbana – El caso del Área Metropolitana de Mendoza. Universidad Nacional de Salta.
COUTTS, C. y HAHN, M. (2015). Green infrastructure, ecosystem services, and human health. International Journal of Environmental Research and Public Health, vol. 12, pp. 9768-9798. DOI: 10.3390/ijerph120809768
DAVIS, A.; JUNG, J.; PIJANOWSKI, B. y MINOR, E. (2016). Combined vegetation volume and “greenness” affect urban air temperatura. Applied Geography, vol. 71, pp. 106-114. DOI: 10.1016/j.apgeog.2016.04.010
DIRECCIÓN GENERAL DE CATASTRO- MENDOZA [en línea]. [Consultado 1 junio 2010]. Disponible en: https://www.atm.mendoza.gov.ar/portalatm/zoneTop/catastro/ catastro.jsp
EARTH OBSERVATION GROUP (EOG). NOAA NATIONAL GEOPHYSICAL DATA CENTER [en línea]. [Consultado 15 enero 2017]. Disponible en: https://ngdc. noaa.gov/eog/night_sat/nightsat.html
ELLINGSWORTH, D.; BINKLEY, M.; y MACO, S. (2016). I-Tree. I-Tree Canopy Technical Notes. Disponible en: www.itreetools.org
ELMQVIST, T.; FRAGKIAS, M.; GOODNESS, J.; GÜNERALP, B.; MARCOTULLIO, P.J.; MCDONALD, R.I.; PARNELL, S.; SCHEWENIUS, M.; SENDSTAD, M.; SETO, K.C. y WILKINSON, C. (Eds.). (2013). Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer Netherlands. DOI: https://doi.org/10.1007/978-94-007-7088-1
ELMQVIST, T.; SETALA, H.; HANDEL, S.; VAN DER PLOEG, S.; ARONSON, J.; BLIGNAUT, J.; GOMEZ-BAGGETHUN, E.; NOWAK, D.; KRONENBERG, J. y DE GROOT, R. (2015). Benefits of restoring ecosystem services in urban areas. Current Opinions in Environmental Sustainability, vol. 14, pp: 101-108. DOI: https://doi.org/10.1016/j.cosust.2015.05.001
ESCOBEDO, F.; ADAMS, D. y TIMILSINA, N. (2015). Urban forest structure effects on property value. Ecosystem Services, vol. 12, pp. 209–217. DOI: 10.1016/j.ecoser.2014.05.002
GIVONI, B. (1998). Climate considerations in building and urban design. John Wiley y Sons, Inc., USA.
GÓMEZ-MUÑOZ, V. y FERNÁNDEZ, L. (2010). Effect of tree shades in urban planning in hot-arid climatic regions. Landscape and Urban Planning, vol. 94, issues 3–4, pp. 149-157. DOI: https://doi.org/10.1016/j.landurbplan.2009.09.002
HAIDER, T. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, vol. 25, issue 2, pp. 99-103. DOI: https://doi.org/10.1016/S0378-7788(96)00999-1
HEISLER, G. (1986). Effects of individual trees on the solar radiation climate of small buildings. Urban Ecology, vol. 9, issues 3–4, pp. 337-359. DOI: https://doi.org/10.1016/0304-4009(86)90008-2
HOLTAN, M.; DIETERLEN, S. y SULLIVAN W. (2014). Social life under cover: tree canopy and social capital in Baltimore, Maryland. Environment and Behavior, vol. 47, pp. 502–525. DOI: https://doi.org/10.1177/0013916513518064
HUETE, A.; JACKSON, R. y POST, D. (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, vol. 17, pp. 37-53. DOI: https://doi.org/10.1016/0034-4257(85)90111-7
JENNINGS, V. y BAMKOLE, O. (2019). The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. International Journal of Environmental. Research and Public Health, vol. 16, issue 3, 452. DOI: 10.3390/ijerph16030452
KAMMEN, D. y SUNTER, D. (2016). City-integrated renewable energy for urban sustainability. Science, vol. 352, issue 6288, pp. 922-928. DOI: 10.1126/science.aad9302
KASPERSEN, P.; FENSHOLT, R. y DREWS, M. (2015). Using Landsat vegetation indices to estimate impervious surface fractions for European Cities. Remote Sensing, vol. 7, pp. 8224-8249. DOI: https://doi.org/10.3390/rs70608224
KO, Y. (2018). Trees and vegetation for residential energy conservation: A critical review for evidence-based urban greening in North America. Urban Forestry y Urban Greening, vol. 34, pp. 318-335. DOI: https://doi.org/10.1016/j.ufug.2018.07.021
LING TANG, L. y ZHANG, G. (2013). The Pattern and Gradient Analysis of Urban Green Space in Shenyang, China. Communications in Information Science and Management Engineering, vol. 3, issues 2, pp. 112-122.
LIU, W., CHEN, W. y PENG, C. (2014). Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecological Modelling, vol. 291, pp. 6-14. DOI: 10.1016/j.ecolmodel.2014.07.012
LOCKE D. y MCPHEARSON T. (2018). Urban areas do provide ecosystem services. Frontiers in Ecology and the_Environment, vol.16, issue 4, pp. 203-205. DOI: https://doi.org/10.1002/fee.1796
LOCKE, D.; KING, K.; SVENDSEN, E.; CAMPBELL, L.; SMALL, C.; SONTI, N.; FISHER D. y LU J. (2014). Urban environmental stewardship and changes in vegetative cover and building footprint in New York City neighborhoods (2000–2010). Journal of Environmental Studies and Sciences, vol. 4, .issue 3, pp 250–262. DOI: https://doi.org/10.1007/s13412-014-0176-x
LOCKE,D.; LANDRY, S.; GROVE, J. y CHOWDHURY, R. (2016). What’s scale got to do with it? Models for urban tree canopy. Journal of Urban Ecology, vol. 2, issue 1, pp. 1-16. DOI: 10.1093/jue/juw006
MARTINUZZI, S.; RAMOS-GONZALES, O.; MUÑOZ-ERICKSON, T.; LOCKE, D.; LUGO A. y RADELOFF V. (2017). Vegetation cover in relation to socioeconomic factors in a tropical city assessed from sub-meter resolution imagery. Ecological Applications, vol. 28, issue 3, pp. 681–693. DOI: https://doi.org/10.1002/eap.1673.
MCPERSON, G. y SIMPSON, J. (2003). Potential energy savings in buildings by an urban tree planting programme in California. Urban Forestry y Urban Greening, vol. 2, pp. 73–86. DOI: https://doi.org/10.1078/1618-8667-00025
MCPHERSON, E.G.; XIAOB, Q.; VAN DOORNC, N.S.; DE GOEDED, J.; BJORKMAND, J.; HOLLANDERD, A.; BOYNTOND, R.; QUINND, J. y THORNE, J. (2017). The structure, function and value of urban forests in California communities. Urban Forestry y Urban Greening, vol. 28, pp. 43–53.
MEERA GANDHI, G. y CHRISTY, A. (2015). Ndvi: Vegetation change detection using remote sensing and gis – A case study of Vellore District. Procedia Computer Science, vol. 57, pp. 1199–1210. DOI: https://doi.org/10.1016/j.procs.2015.07.415
MICHELS, C. y GÜTHSB, S. (2008). Evaluation of heat flux reduction provided by the use of radiant barriers in clay tile roofs. Energy and Buildings, vol.40, issue 4, pp. 445-451. DOI: https://doi.org/10.1016/j.enbuild.2007.03.013
MONTEITH, J. y UNSWORTH, M. (1990). Principles of Environmental Physics, 2da ed.Edward Arnold, Londres.
MORELLO, E. y RATTI, C. (2009). Sunscapes: ‘solar envelopes’ and the analysis of urban DEMs. Massachusetts: Massachusetts Institute of Technology. Computers, Environment and Urban Systems, vol 33, issue 1, pp. 26-34. DOI: 10.1016/j.compenvurbsys.2008.09.005
MUNICIPALIDAD DE CAPITAL [en línea]. [Consultado 4 noviembre 2017]. Disponible en: http://www.ciudaddemendoza.gov.ar
NOWAK, D.; CRANE, D. y STEVENS, J. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry y Urban Greening, vol. 4, pp. 115-123. DOI: https://doi.org/10.1016/j.ufug.2006.01.007
NOWAK, D.; HOEHN III, R.; CRANE, D.; STEVENS, J. y WALTON, J. (2007). Assessing urban forest effects and values, Philladelphia’s urban forest. Resour. Bull. NRS-7. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 22 p. DOI: https://doi.org/10.2737/NRS-RB-7
NOWAK, D.; HOEHN, R.; BODINE, A.; GREENFIELD, E. y O’NEIL-DUNNE, J. (2013). Urban forest structure, ecosystem services and change in Syracuse, NY. Urban Ecosyst, vol. 19, pp.1–23. DOI: https://doi.org/10.1007/s11252-013-0326-z.
OKE, T. (1988). The urban energy balance. Progress in Physical Geography: Earth and Environment, vol. 12, pp. 471–508. DOI: https://doi.org/10.1177/030913338801200401
OWENS, S. (1986). Energy planning and urban form. London: Pion Ltd.
PATHAK, V.; TRIPATHI B. y MISHRA V. (2011). Evaluation of Anticipated Performance Index of some tree species for green belt development to mitigate traffic generated noise. Urban Forestry y Urban Greening, vol.10, pp. 61-66. DOI: https://doi.org/10.1016/j.ufug.2010.06.008
PEARLMUTTER, D.; BITAN, A. y BERLINER, P. (1999). Microclimatic analysis of “compact” urban canyons in arid zone. Atmospheric Environment, vol. 33, pp. 4143-4150.DOI: https://doi.org/10.1016/S1352-2310(99)00156-9
PULIAFITO S., GUEVARA M. y PULIAFITO C. (2003). Characterization of urban air quality using GIS as a management system. Environmental Pollution, vol. 122, issue 1, pp.105-117. DOI: 10.1016/S0269-7491(02)00278-6
REDDY, C. y HARINARAYANA, T. (2015). Solar Thermal Energy Generation Potential in Gujarat and Tamil Nadu States, India. Energy and Power Engineering, vol. 7, issue 13, pp. 591-603. DOI: http://dx.doi.org/10.4236/epe.2015.713056
ROTH, M. (2013). Urban Heat Islands. Handbook of Environmental Fluid Dynamics, vol. 2, pp. 143- 159.
ROUSE, J.; HAAS, R.; DEERING, D., SCHELL, J. y HARLAN, J. (1974). Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation, Final Report. Texas: A y M Universiy.
RUDD, H.; VALA, J. y SCHAEFER, V. (2002). Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restoration Ecology, vol 10, pp. 368–375. DOI: https://doi.org/10.1046/j.1526-100X.2002.02041
SANTAMOURIS, M.; HADDAD, S.; SALIARI, M.; VASILAKOPOULOU, K.; SYNNEFA, A.; PAOLINI, R.; ULPIANI, G.; GARSHHASBI, S. y FIORITO, F. (2018). On the energy impact of urban heat island in Sydney. Climate and energy potential of mitigation technologies. Energy and Buildings, vol. 166, pp. 154-164. DOI: https://doi.org/10.1016/j.enbuild.2018.02.007
SANTANA-RODRÍGUEZ, L.; ESCOBAR-JARAMILLO, L. y CAPOTE, P. (2010). Estimación de un índice de calidad ambiental urbano, a partir de imágenes de satélite. Revista de Geografía Norte Grande, vol. 45, pp. 77-95. DOI: http://dx.doi.org/10.4067/S0718-34022010000100006
SHAHABI, H.; AHMAD, B.; MOKHTARI, M. y ALI ZADEH, M. (2012). Detection of urban irregular development and green space destruction using normalized difference vegetation index (NDVI), principal component analysis (PCA) and post classification methods: A case study of Saqqez city. International Journal of the Physical Sciences, vol. 7, issue 17, pp. 2587-2595. DOI: https://doi.org/10.5897/IJPS12.009
TAVARES, P.; BELTRÃO, N.; SILVA GUIMARÃES, U.; TEODORO, A. y GONÇALVES, P. (2019). Urban Ecosystem Services Quantification through Remote Sensing Approach: A Systematic Review. Environments, vol. 6, issue 5, pp. 51-66. DOI: https://doi.org/10.3390/environments6050051
TAYLOR, L. y HOCHULI, D. (2015). Creating better cities: how biodiversity and ecosystem functioning enhance urban residents' wellbeing. Urban Ecosystems, vol. 18, issue 3, pp. 747-762. DOI: 10.1007/s11252-014-0427-3
UNITED STATES GEOLOGICAL SURVEY (USGS), EARTHEXPLORER [en línea]. [Consultado 20 septiembre 2016]. Disponible en: https://earthexplorer.usgs. gov/
WEBER, C. (2013). Ecosystem Services Provided by Urban Vegetation: A Literature Review. In: Rauch S., Morrison G., Norra S., Schleicher N. (Eds). Urban Environment. DOI: https://doi.org/10.1007/978-94-007-7756-9_10
ZHOU, W., TROY, A. y GROVE, M. (2008). Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data. Sensors, vol. 8, pp.1613–1636. DOI: 10.3390/s8031613
ZITER, C. (2016). The biodiversity-ecosystem service relationship in urban areas: a quantitative review. Oikos, vol. 125, pp. 761-768. DOI: https://doi.org/10.1111/oik.02883
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
La revista Proyección establece las siguientes condiciones de publicación para los/as autores/as:
- Los/as autores/as conservan los derechos de autor y ceden a la revista el derecho de publicación bajo la Licencia Creative Commons Atribución-No Comercial-CompartirIgual 3.0 No portada (CC BY-NC-SA 3.0) que permite a terceros copiar, distribuir, exhibir y ejecutar la obra citando siempre la fuente y los datos de autoría según la norma prevista por la Revista Proyección. Esta licencia no permite el uso de la obra con fines comerciales.
- Todos los trabajos publicados por Proyección, Estudios Geográficos y de Ordenamiento Territorial serán bajo la modalidad de gratuidad para autores/as y lectores/as.