The water resource associated with lakes in the Central Andes of Argentina (31°-36° S)

Authors

  • Mariana Correas Gonzalez Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Consejo Nacional de Investigaciones Científicas y Técnicas
  • Stella Maris Moreiras Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Consejo Nacional de Investigaciones Científicas y Técnicas Cátedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo

DOI:

https://doi.org/10.48162/rev.40.008

Keywords:

lakes origin, lake inventory, mountain lakes, high mountains,, natural dams

Abstract

Lakes are valuable natural resources since they can be used as freshwater reserves and tourist attractions while allowing the development of natural high-altitude ecosystems. In the context of Global Climate Change, an increase in the number,
size, and volume of these lakes is expected due to glacier melting. Many lake inventories have been done in the world in order to know the evolution of these water bodies, although they were mostly done from a hazard approach. This study aimed to identify, inventory, and classify existing lakes in the Central Andes of Argentina (31 – 36º S) according to their damming process and quantify their volume to evaluate the existing water reserve. For this purpose, we processed Landsat satellite images from the year 2020 in a GIS environment. Lakes were identified utilizing the Normalized Difference Water Index (NDWI) and visual interpretation,
and we digitalized them with a manual approach. Volume estimation was done using area-volume empiric relations. Our results reveal a total of 641 lakes whose total volume has been estimated at 1,345.6 hm3. This water resource preserved in the
high mountain is not exclusively related to glacier lakes. Different types of water bodies prevail in each region according to their inner characteristics. Thus, morainedammed lakes and landslide-dammed lakes are more critical in terms of volume contribution between 31º - 32º S, while at ~33º S, small glacial lakes linked to thermokarst facies over debris-covered glaciers prevail. At ~34º S, the Laguna del Diamante lake represents more than four-fifths of the total volume estimated; while between 34º to 36º S water bodies seem to be forced by geology, presenting a wider lake’s type diversity and significant volumes.

Author Biographies

Mariana Correas Gonzalez, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Consejo Nacional de Investigaciones Científicas y Técnicas

Mariana Correas Gonzalez es Geógrafa por de la Facultad de Filosofía y Letras de la Universidad Nacional de Cuyo y es Magister en Dinámica natural y riesgos por la Universidad de Paris Diderot (Paris VII). Actualmente es becaria doctoral de CONICET e integra el grupo de Geomorfología y Cuaternario del Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA). Su tema de investigación es “Represamientos naturales y peligrosidad de crecida abrupta en los Andes Centrales de Argentina (31- 36ºS)” bajo la dirección de la Dra. Stella Moreiras y el Dr. Jan Klimes del Instituto de Estructura y Mecánica de Rocas de la Academia de Ciencias de República Checa. Resultados parciales de su investigación han sido publicados en revistas científicas internacionales, así como en congresos.

Stella Maris Moreiras, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Consejo Nacional de Investigaciones Científicas y Técnicas Cátedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo

Stella Maris Moreiras es Licenciada en Ciencias Geológicas y Doctora en Ciencias Geológicas por la
Universidad Nacional de San Juan. Profesora Adjunta de la cátedra de Edafología de la Facultad de
Agronomía, Universidad Nacional de Cuyo. Investigadora Independiente de CONICET y líder del grupo de Geomorfología y Cuaternario del Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA) integrado por geólogos, geógrafos, geofísicos, ingenieros civiles, ingenieros en recursos naturales, antropólogos, arqueólogos y profesionales de otros campos. Posee amplia experiencia en Cuaternario, Deslizamientos y Geomorfología. Sus investigaciones comprenden los campos de la estratigrafía cuaternaria, paleosismología, neotectónica, peligros naturales, aluviones catastróficos por rompimiento de diques naturales glaciares o represados por deslizamientos y cambios ambientales recientes. Posee numerosas publicaciones en revistas científicas de primer nivel, internacionales y nacionales. Directora y Co-directora de Tesis doctorales y de grado.

References

Aggarwal, S., Rai, S. C., Thakur, P. K. & Emmer, A. (2017). Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya. Geomorphology, 295 (Supplement C), 39-54. doi: https://doi.org/10.1016/j.geomorph.2017.06.014

Bajracharya, S. R., Mool, P. K. & Shrestha, B. R. (2007). Impact of climate change on Himalayan glaciers and glacial lakes: Case studies on GLOF and associated hazards in Nepal and Bhutan. International Centre for Integrated Mountain Development: Kathmandu.

Banco Interamericano de Desarrollo - BID. (2010). Estudio binacional para la optimización del paso de frontera sistema Cristo Redentor, [Resumen Ejecutivo]. Banco Interamericano de Desarrollo (p.29 Recuperado de: https://www.mininterior.gov.ar/planificacion/pdf/Resumen-Ejecutivo-Cristo-Redentor .pdf

Bruce, R. H., Cabrera, G. A., Leiva, J. C., Lenzano, L. E. (1987). The 1985 surge and ice dam of Glaciar Grande del Nevado del Plomo, Argentina. Journal of Glaciology, 33, 131–132. doi: https://doi.org/10.1017/S0022143000005475.

Buckel, J., Otto, J. C., Prasicek, G. & Keuschnig, M. (2018). Glacial lakes in Austria—Distribution and formation since the Little Ice Age. Global and Planetary Change, 164, 39-51. doi: 10.1016/j.gloplacha.2018.03.003

Carrivick, J. L. & Tweed, F. S. (2013). Proglacial lakes: Character, behaviour and geological importance. Quaternary Science Reviews, 78, 34-52.

Catalan, J., Camarero, L., Felip, M., Pla, S., Ventura, M., Buchaca, T., Bartumeus, F., de Mendoza, G., Miró, A., Casamayor, E. O., Medina-Sánchez, J. M., Bacardit, M., Altuna, M., Bartrons, M. & Diaz de Quijano, D. (2006). The mountain lakes of the Pyrenees. Limnetica, 25 (1-2), 33.

Clague, J., Huggel, C., Korup, O. & McGuire, B. (2012). Climate change and hazardous processes in high mountains. Revista de La Asociación Geológica Argentina, 69(3), 328-338. doi: https://doi.org/10.5167/uzh-77920

Cook, S. J. & Quincey, D. J. (2015). Estimating the volume of Alpine glacial lakes. Earth Surface Dynamics, 3(4), 559-575. doi: https://doi.org/10.5194/esurf-3-559-2015

Cook, S. J., Kougkoulos, I., Edwards, L. A., Dortch, J.& Hoffmann, D. (2016). Glacier change and glacial lake outburst flood risk in the Bolivian Andes. The Cryosphere, 10(5), 2399-2413. doi: https://doi.org/10.5194/tc-10-2399-2016

Correas-Gonzalez, M., Moreiras, S. M., Jomelli, V., & Arnaud-Fassetta, G. (2020). Ice-dammed lake outburst flood risk in the Plomo basin, Central Andes (33º S): Perspectives from historical events. Cuadernos de Investigación Geográfica, 46(1), 223-249. https://doi.org/10.18172/cig.4219

Costa, J. E. & Schuster, R. L. (1988). The formation and failure of natural dams. Geological society of America bulletin, 100(7), 1054-1068. doi: https://doi.org/10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2

D’odorico, P. E., Pérez, D. J., Sequeira, N., & Fauqué, L. (2009). El represamiento y aluvión del río Santa Cruz, Andes Principales (31° 40’S), provincia de San Juan. Revista de la Asociación Geológica Argentina, 65(4): 713-724.

Drewes, J., Moreiras, S. & Korup, O. (2018). Permafrost activity and atmospheric warming in the Argentinian Andes. Geomorphology, 323, 13-24. doi: https://doi.org/10.1016/j.geomorph.2018.09.005

Emmer, A. & Vilímek, V. (2014). New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru. Hydrology and Earth System Sciences, 18(9), 3461-3479.

Emmer, A., Vilímek, V., Klimeš, J. & Cochachin, A. (2014). Glacier retreat, lakes development and associated natural hazards in Cordilera Blanca, Peru. En W. Shan, Y. Guo, F. Wang, H. Marui, & A. Strom (Eds.), Landslides in cold regions in the context of climate change (pp. 231-252). Springer. doi: https://doi.org/10.1007/978-3-319-00867-7_17

Emmer, A., Merkl, S. & Mergili, M. (2015). Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria. Geomorphology, 246, 602-616. doi: https://doi.org/10.1016/j.geomorph.2015.06.032

Emmer, A., Klimeš, J., Mergili, M., Vilímek, V. & Cochachin, A. (2016). 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena, 147, 269-279.

Emmer, A., Harrison, S., Mergili, M., Allen, S., Frey, H. & Huggel, C. (2020). 70 years of lake evolution and glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the future. Geomorphology, 365, 107-178. doi: https://doi.org/10.1016/j.geomorph.2020.107178

Empresa Provincial Sociedad del Estado - EPSE. Recuperado de: www.epsesanjuan.com.ar. Último acceso:26 /07/2021

Espizúa, L. E., & Bengochea, J. D. (1990). Surge of Grande del Nevado Glacier (Mendoza, Argentina) in 1984: Its Evolution through Satellite Images. Geografiska Annaler, 72A (3-4), 255-259. https://doi.org/10.2307/521153.

Espizua, L. E., & Bengochea, J. D. (2002). Landslide Hazard and Risk Zonation Mapping in the Río Grande Basin, Central Andes of Mendoza, Argentina. Mountain Research and Development, 22(2), 177-185. https://doi.org/10.1659/0276-4741(2002)022[0177:LHARZM]2.0.CO;2

Gardelle, J., Arnaud, Y. & Berthier, E. (2011). Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global and Planetary Change, 75(1), 47-55. doi: https://doi.org/10.1016/j.gloplacha.2010.10.003

Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; Le-Quesne, C.; McPhee, J.; Zambrano-Bigiarini, M. (2017). The 2010-2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327, doi: https://doi.org/10.5194/hess-21-6307-2017.

Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. (2019). The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 40, 421–439, doi: https://doi.org/10.1002/joc.6219.

Haeberli, W., Buetler, M., Huggel, C., Friedli, T. L., Schaub, Y. & Schleiss, A. J. (2016). New lakes in deglaciating high-mountain regions–opportunities and risks. Climatic change, 139(2), 201-214.

Haeberli, W., Clague, J. J., Huggel, C. & Kääb, A. (2008). Hazards from lakes in high-mountain glacier and permafrost regions: Climate change effects and process interactions. Avances de la Geomorphología en España, 2010, 439-446.

Harrison, S., Kargel, J. S., Huggel, C., Reynolds, J., Shugar, D. H., Betts, R. A., Emmer, A., Glasser, N., Haritashya, U. K. & Klimeš, J. (2018). Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere, 12, 1195-1209. doi: https://doi.org/10.5194/tc-12-1195-2018

Helbling, R. (1935). The origin of the Río Plomo ice-dam. The Geographical Journal, 85(1), 41–49.

Huggel, C., Kääb, A., Haeberli, W., Teysseire, P. & Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Canadian Geotechnical Journal, 39, 316-330. doi: https://doi.org/10.1139/t01-099

Huggel, C., Clague, J. J. & Korup, O. (2012). Is climate change responsible for changing landslide activity in high mountains? Earth Surface Processes and Landforms, 37(1), 77-91

IANIGLA-Inventario Nacional de Glaciares. (2018). Resumen ejecutivo de los resultados del Inventario Nacional de Glaciares (p. 27). IANIGLA-CONICET, Ministerio de Ambiente y Desarrollo Sustentable de la Nación. Recuperado de: http://www.glaciaresargentinos.gob.ar/?page_id=2571

International Center for Integrated Mountain Development - ICIMOD. (2011). Glacial lakes and glacial lake outburst floods in Nepal. ICIMOD. pp. 109.

Instituto Nacional de Estadísticas y Censos - INDEC (2010). Censo Nacional de Población, Hogares y Viviendas 2010. Argentina. Recuperado de: https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135

Iribarren Anacona, P., Mackintosh, A. & Norton, K. P. (2015). Hazardous processes and events from glacier and permafrost areas: Lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms, 40(1), 2-21. doi: https://doi.org/10.1002/esp.3524

Jeanneret, P., & Moreiras, S. M. (2018). Inventario de procesos de remoción en masa en la cuenca baja del Río Blanco (31°S), Andes Centrales Argentinos. Revista mexicana de ciencias geológicas, 35(3), 215-227. https://doi.org/10.22201/cgeo.20072902e.2018.3.787

King, W. D. V. O. (1934). The Mendoza River Flood of 10-11 January 1934-Argentina. The Geographical Journal, 84(4), 321-326. https://doi.org/10.2307/1786696.

Korup, O. & Tweed, F. (2007). Ice, moraine, and landslide dams in mountainous terrain. Quaternary Science Reviews, 26(25-28), 3406-3422. doi: https://doi.org/10.1016/j.quascirev.2007.10.012

Kozlowski, E. N., & Folguera, A. (2009). Primer registro histórico de una avalancha de rocas en los Andes argentinos: Región de la laguna Baya en los Andes mendocinos. Revista de la Asociación Geológica Argentina, 65(1), 233-235.

Lauro, C., Vich, A. I. J. & Moreiras, S. M. (2019). Streamflow variability and its relationship with climate indices in western rivers of Argentina. Hydrological Sciences Journal, 64(5), 607-619. doi: https://doi.org/10.1080/02626667.2019.1594820

Lehner, B., Verdin, K. & Jarvis, A. (2008). Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales - HydroSHEDS. Recuperado de: https://www.hydrosheds.org/

Lliboutry, L. (1998). Glaciers of South America. Glaciers of Chile and Argentina. En Satellite Image Atlas of Glaciers of the World: Vol. U.S. Geological Survey Professional Paper 1386. USGS. https://pubs.usgs.gov/ pp/p1386i/chile-arg/intro.html

Masiokas, M. H., Rivera, A., Espizua, L. E., Villalba, R., Delgado, S., & Aravena, J. C. (2009). Glacier fluctuations in extratropical South America during the past 1000years. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3), 242-268.

Masiokas, M. H., Villalba, R., Luckman, B. H., Montaña, E., Betman, E., Christie, D., Le Quesne, C. y Mauget, S. (2013). Recent and historic Andean snowpack and streamflow variations and vulnerability to water shortages in central-western Argentina. En R. Pielke, Climate Vulnerability, Vol. 5, 213-227. Elsevier. doi: https://doi.org/10.1016/B978-0-12-384703-4.00522-0

Masiokas, M. H., Rabatel, A., Rivera Ibáñez, A., Ruiz, L., Pitte, P., Ceballos, J. L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., Dussaillant, I., & MacDonell, S. (2020). A Review of the Current State and Recent Changes of the Andean Cryosphere. Frontiers in Earth Science. https://doi.org/10.3389/feart.2020.00099

Mergili, M., Müller, J. P. & Schneider, J. F. (2013). Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Global and Planetary Change, 107, 13-24. doi: https://doi.org/10.1016/j.gloplacha.2013.04.001

Moreiras, S. M. (2006). Frequency of debris flows and rockfall along the Mendoza river valley (Central Andes), Argentina: Associated risk and future scenario. Quaternary International, 158(1), 110-121.

Moreiras S.M., Lauro C. & Mastrantonio L. (2012). Stability analysis and morphometric characterization of palaeo-lakes of the Benjamin Matienzo Basin- Las Cuevas River, Argentina. Natural Hazards, 62 (2): 593-611. doi: https://doi.org/ 10.1007/s11069-012-0095-7

Moreiras, S. M. & Páez, M. S. (2015). Historical damage and earthquake environmental effects related to shallow intraplate seismicity of central western Argentina. Geological Society, London, Special Publications, 399(1), 369-382. doi: https://doi.org/10.1144/SP399.6

Moreiras, S. M., Jeanneret, P., Junquera, S., Correas-Gonzalez, M., & Moragues, S. (2020). Colapsos de morenas posiblemente asociados a la deglaciación pleistocena en los Andes Centrales de Argentina. Revista de la Asociación Geológica Argentina, 77(1), 13.

Organismo Regulador de Seguridad de Presas - ORSEP. www.argentina.gob.ar/orsep/registro-de-presasfiscalizadas/regional-cuyo-centro. Último acceso: 26 /07/2021

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Penna, I. M., Derron, M.-H., Volpi, M., & Jaboyedoff, M. (2013). Analysis of past and future dam formation and failure in the Santa Cruz River (San Juan province, Argentina). Geomorphology, 186: 28-38. https://doi.org/10.1016/j.geomorph.2012.12.011

Perucca, L. P., & Esper Angillieri, M. Y. (2009). Evolution of a debris-rock slide causing a natural dam: The flash flood of Río Santa Cruz, Province of San Juan—November 12, 2005. Natural Hazards, 50(2): 305-320. https://doi.org/10.1007/s11069-008-9341-4

Prieto, M. del R. (1986). The glacier dam on the Rio Plomo: A cyclic phenomenon? Zeitschrift fur Gletscherkunde und Glazialgeologie, 22(1), 73-78.

Ramos, V. A. (1999). Rasgos estructurales del territorio argentino. Geología Argentina, 29(24), 15-75.

Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S. & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 1-7. doi: https://doi.org/10.1038/s41558-020-0855-4

Tapia Baldis, C. C. & Trombotto, D. T. (2015). Cinturones altitudinales criogénicos en la cuenca del río Bramadero, San Juan, Argentina.Acta geológica lilloana. 27(2): 146-158.

Trombotto, D. (2003). Mapping of permafrost and the periglacial environments, Cordón del Plata, Argentina. En: 8th International Conference on Permafrost. 161-162., 21-25 Julio de 2003. Zürich, Switzerland

Trombotto Liaudat, D., Lenzano, M. G., & Castro, M. (2012). Inventory and Monitoring of Rock Glaciers and Cryogenic Processes in the Central Andes of Mendoza, Argentina: Birth and Extinction of a Periglacial Lake. En K. M. Hinkel (Ed.), Proceedings on the Tenth International Conference on Permafrost: Vol. I, 419-424.

Viale, M. & Nuñez, M. (2011). Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics. Journal of Hydrometeorology, 12. doi: https://doi.org/10.1175/2010JHM1284.1

Wilson, R., Glasser, N. F., Reynolds, J. M., Harrison, S., Iribarren Anacona, P., Schaefer, M. & Shannon, S. (2018). Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change, 162, 275-291. doi: https://doi.org/10.1016/j.gloplacha.2018.01.004

Zamorano, M. (2008). El nuevo Cuyo. En J. A. Roccatagliata (Ed.), Argentina. Una visión actual y prospectiva desde la dimensión territorial. (1.a ed., pp. 542-588). Emecé. Buenos Aires.

Published

20-12-2021

How to Cite

Correas Gonzalez, M. ., & Moreiras, S. M. . (2021). The water resource associated with lakes in the Central Andes of Argentina (31°-36° S). Boletín De Estudios Geográficos, (116), 73–101. https://doi.org/10.48162/rev.40.008

Issue

Section

Dossier