Changes in snow cover and its relationship with flow for the characterization, monitoring and management of mountain basins in the extratropical Andes of Chile between 29° and 37°S using remote sensing

Authors

  • Ana Hernández-Duarte Doctorado Interdisciplinario en Ciencias Ambientales. Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Laboratorio de Teledetección y Monitoreo Ambiental (TeleAmb). Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha.
  • Jean Pierre Francois Sepúlveda Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. HUB Ambiental, Universidad de Playa Ancha
  • Valentina Ignacia Contreras Figueroa Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha.
  • Flavia Renne Saud Valero Universidad Andrés Bello
  • Freddy Alejandro Saavedra Pimentel Laboratorio de Teledetección y Monitoreo Ambiental (TeleAmb). Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. HUB Ambiental, Universidad de Playa Ancha

DOI:

https://doi.org/10.48162/rev.40.010

Keywords:

snow cover, mountain hydrology, extratropical Andes, remote sensing, Google Earth Engine

Abstract

Central Chile (30°- 37° S), concentrates about 75% of the population of the country which translates into a huge demand for water. Much of the available water in this area comes from seasonal snow and glaciers located in the high mountain. In this context, climate change is positioned as a threat to water security through the decrease in rainfall and the acceleration of the melting of snows. It is necessary to have robust systems to monitor the spatial-temporal variability of snow patterns in order to quantify effects and map affected areas and to develop forecasting systems and prepare contingency plans. The present work establishes the relationship between snow cover and flow determining the spatio-temporal variability of subbasins of the extratropical Andes of Chile (29°- 37° S) between the years 2000-2020 using MODIS satellite images and climate variables through Google Earth Engine.
The results account for the characterization of the hydrological regime and the seasonal pattern of the snow of the sub-basins studied, being those located in the central portion of the study area (30.5°- 35° S) of a snow regime, and at the edges (29° and 36° S) mixed regime. This configuration affects the annual flow dynamics where a lag period can be seen between the maximum continuous precipitation and the maximum flow rate. Likewise, there has been a constant decrease in snow cover
during the last 20 years being appreciable that in the central portion of the study area (that is, 33°- 35° S) this process occurs more severely. The experience gained from the analysis and the results of this work indicate the feasibility of using approximations associated with satellite remote sensing to estimate variations in the snow cover pattern and better characterize the hydrological regimes of basins with limited meteorological data to support water monitoring for the sustainability of the cryosphere and for the water security of the territories.

Author Biographies

Ana Hernández-Duarte, Doctorado Interdisciplinario en Ciencias Ambientales. Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Laboratorio de Teledetección y Monitoreo Ambiental (TeleAmb). Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha.

Ana Hernández-Duarte es Magíster en Desarrollo Regional y Medio Ambiente, candidata a Doctora en
Interdisciplinario en Ciencias Ambientales de la Universidad de Playa Ancha, posee experiencia en manejo de imágenes satelitales para el estudio de cambios de cobertura terrestre. Actualmente es docente de la carrera de Geografía de la Universidad de Playa Ancha, asistente de investigación del proyecto FONDEF  IDeA I+D 2020 FONDEF ID20i10058 y Lab Manager del Laboratorio de Teledetección y Monitoreo Ambiental (TeleAmb). Se encuentra realizando su tesis de investigación doctoral sobre la interacción de perturbaciones y la recuperación del bosque esclerófilo de la zona central de Chile.

Jean Pierre Francois Sepúlveda, Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. HUB Ambiental, Universidad de Playa Ancha

Jean-Pierre Francois es Biólogo y Licenciado en Biología de la Pontificia Universidad Católica de
Valparaíso, Magíster en Ciencias de la Universidad de Chile y Doctor en Ciencias Naturales, mención en
Geografía Física, de la Universidad de Colonia, Alemania. En la actualidad es Profesor asociado de la
Facultad Ciencias Naturales y Exactas de la Universidad de Playa Ancha (UPLA), en donde dicta clases en carreras de pregrado y posgrado. Su investigación se centra en comprender los cambios experimentados por los ecosistemas terrestres durante el posglacial (últimos 20.000 años), con especial énfasis en los procesos y mecanismos (ecológicos y climáticos) asociados a los cambios en la vegetación. Ha participado y forma parte de diferentes grupos de investigación nacionales y extranjeros, lo cual se ve reflejado en sus publicaciones.

Valentina Ignacia Contreras Figueroa, Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha.

Valentina Contreras es estudiante de la carrera de Geografía de la Universidad de Playa Ancha.
Actualmente se encuentra realizando su tesis de investigación enfocada en el uso de algoritmos espacio
temporales para reducir la presencia de nubes desde imágenes satelitales en la cuenca del río Aconcagua
enmarcada en el proyecto FONDEF IDeA I+D 2020 ID20i10058 “Observatorio Satelital de Nieves”.

Flavia Renne Saud Valero, Universidad Andrés Bello

Flavia Saud es geóloga de la Universidad Andrés Bello. Actualmente se desempeña en el ámbito privado.

Freddy Alejandro Saavedra Pimentel, Laboratorio de Teledetección y Monitoreo Ambiental (TeleAmb). Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. HUB Ambiental, Universidad de Playa Ancha

Freddy Saavedra Ingeniero agrónomo, PhD en Ciencias de la Tierra en Colorado State University, posee
experiencia en manejo de imágenes satelitales específicamente en productos de nieve y cambios de
cobertura de suelo. Actualmente se desempeña como docente de la carrera de Geografía e investigador
y director del Laboratorio de Teledetección y Monitoreo Ambiental (TeleAmb) de la Universidad de Playa
Ancha.

References

Aceituno, P., Boisier, J. P., Garreaud, R., Rondanelli, R., & Rutllant, J. A. (2021). Climate and Weather in Chile. In B. Fernández & J. Gironás (Eds.), Water Resources of Chile (pp. 7-29). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-56901-3_2

Adam, J. C., Hamlet, A. F., & Lettenmaier, D. P. (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological processes, 23(7), 962-972. https://doi.org/10. 1002/hyp.7201

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., . . . Nelkin, E. (2003). The Version2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). Journal of Hydrometeorology, 4(6), 1147-1167. https://doi:10.1175/1525-7541(2003)004<1147:Tvgpcp>2.0.Co;2

Alizadeh, Z., Yazdi, J., Kim, J. H., & Al-Shamiri, A. K. (2018). Assessment of Machine Learning Techniques for Monthly Flow Prediction. Water, 10(11), 1676. Retrieved from https://www.mdpi.com/2073-4441/10/11/1676

Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J., & Vis, M. (2021). Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrol. Earth Syst. Sci., 25(1), 429-446.https://doi.org/10.5194/hess-25-429-2021

Aravena, J. C., & Luckman, B. H. (2009). Spatio-temporal rainfall patterns in southern South America. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(14), 2106-2120. https://doi.org/10.1002/joc.1761

Arsenault, K. R., Houser, P. R., & De Lannoy, G. J. M. (2014). Evaluation of the MODIS snow cover fraction product. Hydrological processes, 28(3), 980-998. https://doi.org/10.1002/hyp.9636

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303-309. https://doi.org/10.1038/nature04141

Bormann, K. J., Brown, R. D., Derksen, C., & Painter, T. H. (2018). Estimating snow-cover trends from space. Nature Climate Change, 8(11), 924-928. https://doi.org/10.1038/s41558-018-0318-3

Borsdorf, A., & Stadel, C. (2015). The Andes: a geographical portrait: Springer. https://doi.org/10.1007/978-3-319-03530-7

Cordero, R. R., Asencio, V., Feron, S., Damiani, A., Llanillo, P. J., Sepulveda, E., . . . Casassa, G. (2019). DrySeason Snow Cover Losses in the Andes (18°-40°S) driven by Changes in Large-Scale Climate Modes. Scientific Reports, 9(1), 16945-16945. https://doi.org/10.1038/s41598-019-53486-7

Cortés, G. (2010). Evaluación de un modelo hidrológico semi distribuido para la estimación de la escorrentía de deshielo en el río Juncal. Departamento de Ingenieria Civil.

Cortés, G., & Margulis, S. (2017). Impacts of El Niño and La Niña on interannual snow accumulation in the Andes: Results from a high-resolution 31 year reanalysis. Geophysical Research Letters, 44(13), 6859-6867. https://doi.org/10.1002/2017GL073826

Cortés, G., Vargas, X., & McPhee, J. (2011). Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. Journal of Hydrology, 405(1), 93-109. https://doi.org/10.1016/j.jhydrol.2011.05.013

Deems, J. S., Painter, T. H., & Finnegan, D. C. (2013). Lidar measurement of snow depth: a review. Journal of Glaciology, 59(215), 467-479. doi:https://doi.org/10.3189/2013JoG12J154

Dong, C. (2018). Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. Journal of Hydrology, 561, 573-583. https://doi.org/10.1016/j.jhydrol.2018.04.027

Falvey, M., & Garreaud, R. (2007). Wintertime Precipitation Episodes in Central Chile: Associated Meteorological Conditions and Orographic Influences. Journal of Hydrometeorology, 8(2), 171-193. doi:https://doi.org/10.1175/jhm562.1

Farías-Barahona, D., Vivero, S., Casassa, G., Schaefer, M., Burger, F., Seehaus, T., . . . Braun, M. H. (2019). Geodetic Mass Balances and Area Changes of Echaurren Norte Glacier (Central Andes, Chile) between 1955 and 2015. Remote Sensing, 11(3), 260. Retrieved fromhttps://www.mdpi.com/2072-4292/11/3/260

Favier, V., Falvey, M., Rabatel, A., Praderio, E., & López, D. (2009). Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile's Norte Chico region (26–32°S). Water Resources Research, 45(2). https://doi.org/10.1029/2008WR006802

Fernández, B., & Gironás, J. (2021). Water Resources of Chile (Vol. 8): Springer.

Fritze, H., Stewart, I. T., & Pebesma, E. (2011). Shifts in Western North American Snowmelt Runoff Regimes for the Recent Warm Decades. Journal of Hydrometeorology, 12(5), 989-1006. https://doi.org/10.1175/2011jhm1360.1

Gao, F., Wang, Y., & Hu, X. (2019). Evaluation of the suitability of Landsat, MERIS, and MODIS for identifying spatial distribution patterns of total suspended matter from a self-organizing map (SOM) perspective. CATENA, 172, 699-710. https://doi.org/10.1016/j.catena.2018.09.031

Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., & Veloso-Aguila, D. (2020). The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. International Journal of Climatology, 40(1), 421-439. https://doi.org/10.1002/joc.6219

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Hall, D., & Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. Hydrological processes, 21(12), 1534-1547. https://doi.org/10.1002/hyp.6715

Hall, D., Foster, J. L., DiGirolamo, N. E., & Riggs, G. A. (2012). Snow cover, snowmelt timing and stream power in the Wind River Range, Wyoming. Geomorphology, 137(1), 87-93. https://doi.org/10.1016/j.geomorph.2010.11.011

Hall, D. K., Riggs, G. A., DiGirolamo, N. E., & Román, M. O. (2019). Evaluation of MODIS and VIIRS cloudgap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sci., 23(12), 5227-5241. https://doi.org/10.5194/hess-23-5227-2019

IPCC. (2019). IPCC Special Report on the ocean and cryosphere in a changing climate.

Khatibi, R., Sivakumar, B., Ghorbani, M. A., Kisi, O., Koçak, K., & Farsadi Zadeh, D. (2012). Investigating chaos in river stage and discharge time series. Journal of Hydrology, 414-415, 108-117. https://doi.org/10.1016/j.jhydrol.2011.10.026

Li, X., Jing, Y., Shen, H., & Zhang, L. (2019). The recent developments in cloud removal approaches of MODIS snow cover product. Hydrol. Earth Syst. Sci., 23(5), 2401-2416. https://doi.org/10.5194/hess-23-2401-2019

Lundquist, J. D., Dickerson-Lange, S., Gutmann, E., Jonas, T., Lumbrazo, C., & Reynolds, D. (2021). Snow interception modelling: Isolated observations have led to many land surface models lacking appropriate temperature sensitivities. Hydrological processes, 35(7), e14274.https://doi.org/10.1002/hyp.14274

Malmros, J. K., Mernild, S. H., Wilson, R., Tagesson, T., & Fensholt, R. (2018). Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sensing of Environment, 209, 240-252. https://doi.org/10.1016/j.rse.2018.02.072

Mardones Bascuñan, P. B. (2019). Impactos del cambio climático en la altura de la isoterma 0° C sobre Chile Central, Chile: Universidad de Chile.

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M., Payn, R. A., & LaFontaine, J. H. (2015). PRMS-IV, the precipitation-runoff modeling system, version 4. US Geological Survey Techniques and Methods, 6, B7.

Masiokas, M. H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L.,. . . MacDonell, S. (2020). A Review of the Current State and Recent Changes of the Andean Cryosphere. frontiers in Earth Science, 8(99). https://doi.org/10.3389/feart.2020.00099

Masiokas, M., Villalba, R., Luckman, B., Christie, D., Betman, E., Le Quesne, C., . . . Prieto, M. (2013). Recent and historic Andean snowpack and streamflow variations and vulnerability to water shortages in Central Chile and Central-western Argentina.

Masiokas, M., Villalba, R., Luckman, B., Le Quesne, C., & Aravena, J. (2006). Snowpack Variations in the Central Andes of Argentina and Chile, 1951-2005: Large-Scale Atmospheric Influences and Implications for Water Resources in the Region. Journal of Climate, 19(24), 6334-6352.

https://doi.org/10.1175/jcli3969.1

Méndez-Gutiérrez, A. G., Corral-Rivas, S., Nájera-Luna, J. A., Cruz-Cobos, F., & Pompa-García, M. (2021).Morphometric analysis of El Salto watershed, Durango, México. Terra Latinoamericana, 39. https://doi.org/10.28940/terra.v39i0.641

McNamara, I., Nauditt, A., Zambrano-Bigiarini, M., Ribbe, L., & Hann, H. (2020). Modelling water resources for planning irrigation development in drought-prone southern Chile. International Journal of Water Resources Development, 1-26. https://doi.org/10.1080/07900627.2020.1768828

Mernild, S. H., Liston, G. E., Hiemstra, C. A., Malmros, J. K., Yde, J. C., & McPhee, J. (2017). The Andes Cordillera. Part I: snow distribution, properties, and trends (1979–2014). International Journal of Climatology, 37(4), 1680-1698. https://doi.org/10.1002/joc.4804

Mernild, S. H., Liston, G. E., Hiemstra, C. A., Yde, J. C., McPhee, J., & Malmros, J. K. (2017). The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile. International Journal of Climatology, 37(4), 1699-1715.https://doi.org/10.1002/joc.4828

Molotch, N. P., & Meromy, L. (2014). Physiographic and climatic controls on snow cover persistence in the Sierra Nevada Mountains. Hydrological processes, 28(16), 4573-4586. https://doi.org/10.1002/hyp.10254

Pagano, T., & Garen, D. (2003). Use of Climate Information in Official Western US Water Supply Forecasts. World Water & Environmental Resources Congress 2003, 1-9. https://doi.org/doi:10.1061/40685(2003)377

Ragettli, S., Cortés, G., McPhee, J., & Pellicciotti, F. (2014). An evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watersheds. Hydrological processes, 28(23), 5674-5695. https://doi.org/10.1002/hyp.10055

Rango, A., Martinec, J., & Roberts, R. (2008). Relative importance of glacier contributions to water supply in a changing climate. World Resource Review, 20(3), 233-251.

Rango, A., Salomonson, V. V., & Foster, J. L. (1977). Seasonal streamflow estimation in the Himalayan region employing meteorological satellite snow cover observations. Water Resources Research, 13(1), 109-112. https://doi.org/10.1029/WR013i001p00109

Richer, E., Kampf, S., Fassnacht, S., & Moore, C. (2013). Spatiotemporal index for analyzing controls on snow climatology: application in the Colorado Front Range. Physical Geography, 34(2), 85-107. https://doi:10.1080/02723646.2013.787578

Rojas, M. (2006). Multiply Nested Regional Climate Simulation for Southern South America: Sensitivity to Model Resolution. Monthly Weather Review, 134(8), 2208-2223. https://doi.org/10.1175/mwr3167.1

Saavedra, F. (2016). Spatial and temporal variability of snow cover in the Andes Mountains and its influence on streamflow in snow dominant rivers. Colorado State: University. Libraries.

Saavedra, F, Kampf, S., Fassnacht, S., & Sibold, J. (2017). A snow climatology of the Andes Mountains from MODIS snow cover data. International Journal of Climatology, 37(3), 1526-1539. https://doi.org/10.1002/joc.4795

Saavedra, F., Kampf, S., Fassnacht, S., & Sibold, J.(2018). Changes in Andes snow cover from MODIS data, 2000–2016. The Cryosphere, 12(3), 1027-1046.https://doi.org/10.5194/tc-12-1027-2018

Shaw, T. E., Gascoin, S., Mendoza, P. A., Pellicciotti, F., & McPhee, J. (2020). Snow Depth Patterns in a High Mountain Andean Catchment from Satellite Optical Tristereoscopic Remote Sensing. Water Resources Research, 56(2), e2019WR024880. https://doi.org/10.1029/2019WR024880

Stewart, I. T. (2009). Changes in snowpack and snowmelt runoff for key mountain regions. Hydrological processes, 23(1), 78-94. https://doi.org/10.1002/hyp.7128

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., & Albano, C. M. (2015). Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLOS ONE, 10(12), e0143619. http://doi:10.1371/journal.pone.0143619

Tsai, Y.-L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Wet and Dry Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas with a Machine Learning Technique. Remote Sensing, 11(8), 895. http://dx.doi.org/10.3390/rs11080895

Wałęga, A., & Rutkowska, A. (2015). Usefulness of the Modified NRCS-CN Method for the Assessment of Direct Runoff in a Mountain Catchment. Acta Geophysica, 63(5), 1423-1446. http://dx.doi.org/10.1515/acgeo-2015-0043

Published

20-12-2021

How to Cite

Hernández-Duarte, A. ., Francois Sepúlveda, J. P. ., Contreras Figueroa, V. I. ., Saud Valero, F. R. ., & Saavedra Pimentel, F. A. . (2021). Changes in snow cover and its relationship with flow for the characterization, monitoring and management of mountain basins in the extratropical Andes of Chile between 29° and 37°S using remote sensing. Boletín De Estudios Geográficos, (116), 123–155. https://doi.org/10.48162/rev.40.010

Issue

Section

Dossier