Recursos hídricos superficiales de la vertiente oriental de los Andes Centrales (28°-37°S) en contexto de variabilidad hidroclimática
DOI:
https://doi.org/10.48162/rev.40.007Palabras clave:
hidroclimatología., precipitaciones, temperatura, caudal, tendencias, saltos, periodicidadesResumen
El estudio de la variabilidad hidroclimática de una región contribuye a mejorar la seguridad hídrica de las comunidades ya que brinda información para la gestión de los recursos hídricos. El objetivo es identificar los principales modos de variabilidad y la relación entre series temporales de precipitación, temperatura y caudales medios anuales para los últimos 60años de algunas cuencas de la región de Cuyo. Se realizaron pruebas de tendencias, saltos y periodicidades. Los resultados, en líneas generales, muestran que las precipitaciones y los caudales tienden a disminuir y presentan ciclos significativos de alta y baja frecuencia. Por el contrario, la temperatura muestra una tendencia creciente asociada a incrementos en la década del 80, los períodos con mayor intensidad son los que se presentan en escala interanual. Estos resultados brindan información para la comprensión de las
relaciones entre los patrones de variabilidad hidroclimática y los intercambios entre los diversos componentes del ciclo hidrológico en el centro oeste argentino, lo que permite mejorar la toma de decisiones.
Citas
Agosta, E., & Compagnucci, R.H. (2012). Central-West Argentina Summer Precipitation Variability and Atmospheric Teleconnections. American Meteorological Society, 25, 1657-1677.
Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climate, 6, 661-675.
Araneo, D.C., Rivera, J.A., & Villalba, R. (2015). Variabilidad intraestacional de las condiciones níveas de los Andes Centrales relacionadas con los cambios en el régimen hidrológico del río Atuel. Acta geológica lilloana, 27, 2: 77-86.
Buishand, T.A. (1982). Some Methods for Testing the Homogeneity of Rainfall Records. Journal of Hydrology, 58, 11-27.
Buishand, T.A. (1984). Tests for Detecting a Shift in the Mean of Hydrological Time Series. Journal of Hydrology, 73, 51-69.
Caragunis, J.I. (2018). Variabilidad de baja frecuencia en los caudales de los ríos del centro-norte de la Argentina. Aplicación en el análisis de sequías hidrológicas. Tesis de Licenciatura en Cs. de la Atmósfera. UBA.
Carril, A., Doyle, M., Barros, V., & Núñez, M. (1997). Impacts of climate change on the oases of the Argentinean cordillera. Climate Research, 9, 121-129.
Compagnucci, R., Blanco, S., Figliola, A., & Jacovkis, P. (2000). Variability in subtropical Andean Argentinean Atuel River; a wavelet approach. Environmetrics, 11, 251-269.
Compagnucci, R.H., & Araneo, D. (2007). Alcances de El Niño como predictor del caudal de los ríos andinos argentinos. Ingeniería Hidráulica en México, 22(3), 23-35.
Garreaud, R., & Fuenzalida, H. (2007). The Influence of Andes on cutoff lows: A modeling study. Mon. Wea. Rev., 135, 1596-1613.
Gonzalez-Reyes, A., et al. (2017). Spatio-temporal variations in hydroclimate across the Mediterranean Andes (30°–37°S) since the early 20th century. Journal of Hydrometeorology, 18, 1929–1942.
Gouhier, T. C., Grinsted, A. & Simko, V. (2018). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (Version 0.20.17). Available from https://github.com/tgouhier/biwavelet
Grinsted, A., Moore, J. C. & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561-566
GWP. (2000). Towards Water Security: A Framework for Action. Global Water Partnership: Stockholm.
Hamed, K.H., & Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. J. of Hydrology, 204(1-4), 182–196.
Harris, I., Jones, P.D., Osborna, T.J. & Listera, D.H. (2014). Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International journal of climatology, 34, 623–642.
Hirsch, R.M. (1982). A comparison of four streamflow record extension techniques. Water Resources Research, 18(4), 1081-1088.
Klees R., Haagmans, R. (2000). Wavelet in the geosciences. Springer-Verlag: Berlin.
Kundzewicz, Z., & Robson, A. (2000). Detecting trend and other changes in hydrological data. WCDMP-45. WMO/TD, 1013. Geneva.
Labat, D. (2008). Wavelet analysis of the annual discharge records of the world’s largest rivers. Advances in Water Resources, 31, 109–117.
Lauro, C., Vich, A., & Moreiras, S.M. (2016). Variabilidad del régimen fluvial en cuencas de la región de Cuyo. Geoacta, 40(2), 28-51.
Lauro, C., Vich, A., & Moreiras, S.M. (2018). Regional flood frequency analysis in the Central Western River Basins (28°-37°S) of Argentina. River Research and Applications, doi: https://doi.org/10.1002/rra.3319
Lauro, C., Vich, A., & Moreiras, S.M. (2019). Streamflow variability and its relationship with climate indexes in western river basins of Argentina. Hydrological Science Journal, 57 (1). doi: https://doi.org/10.1080/02626667.2019.1594820
Lauro, C., Vich, A., Moreiras, S.M., Bastidas, L., Otta, S., Vaccarino, E. (2021). Regionalización del caudal máximo anual en cuencas del sistema hidrográfico del río Colorado, Argentina. Cuadernos de Investigación Geográfica, 47. http://doi.org/10.18172/cig.4465.
Lauro, C., Vich, A., Otta, S., Moreiras, S.M., Bastidas, L., Vaccarino, E. (2021). Modos de variabilidad hidroclimática en los Andes Centrales (30-37°S). AAGG 2021.
Magrin, G.O., J.A. Marengo, J.-P. Boulanger, M.S. Buckeridge, E. Castellanos, G. Poveda, F.R. Scarano, and S. Vicuña, (2014). Central and South America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, pp. 1499-1566.
Mauas P, Buccino A, & Flamenco E. (2011). Long-term solar activity influences on South American rivers. Journal of Atmospheric and Solar-Terrestrial Physics, 73(2–3), 377–382.
Mallat, S. (1999). A Wavelet tour of signal processing. Wavelet analysis and its applications. Academic Press, San Diego, 637.
Masiokas, M., Villalba, R., Luckman, B.H., Le Quesne C., & Aravena, J.C. (2006). Snowpack Variations in the Central Andes of Argentina and Chile, 1951 – 2005, Large-Scale Atmospheric Influences and Implications for Water Resources in the Region. Journal of Climate, 19, 6334–52.
Masiokas, M., lba, R., Luckman, B., & Mauget, S. (2010). Intra-to Multidecadal Variations of Snowpack and Streamflow Records in the Andes of Chile and Argentina between 30° and 37°S. J. of Hydrometeorology, 11, 822-831.
Masiokas, M.H., Cara, L., Villalba, R. et al. (2019). Streamflow variations across the Andes (18°–55°S) during the instrumental era. Sci Rep 9, 17879.https://doi.org/10.1038/s41598-019-53981-x
Massone, H., Martinez,D., Vich, A., Lodoño, M.Q., Trombotto, D., & Grondona, S. (2016). Snowmelt contribution to the sustainability of the irrigated Mendoza s Oasis, Argentina: an isotope study. Envoron, Earth Sci, 75,520. doi https://doi.org/10.1007/s12665-015-5141-9.
Meyers, S.R. (2014). Astrochron: An R Package for Astrochronology. https://cran.r-project.org/package=astrochron
Otta, S., Lauro, C., Vich A., Vaccarino, E., Bastidas L. Variabilidad de la oferta hídrica en los oasis irrigados de Mendoza y San Juan (Argentina) en el período 1981-2018. Actas E-ICES 15. Virtual; Octubre 2020.
Pettitt, A.N. (1979). A non-parametric approach to the change-point problem. Appl. Statist, 28, 126-135.
Rajagopalan & Lall, (1998). Interanual variability in western US precipitation. Journal of Hydrology, 210,51-67.
Rao, A.R & Hamed, K. (2003). Multi-taper method of analysis of periodicities in hydrologic data. Journal of Hydrology, 279, 125-143.
Remington, R.D., & Schork, M.A., (1974). Estadística Biométrica y Sanitaria. Editorial Prentice/Hall International: Bogota.
Rivera, J.A., Araneo, D.C., & Penalba, O.C. (2014). Climatología de sequías hidrológicas en los ríos andinos de Argentina. XXVII Reunión Científica de la Asociación Argentina de Geofísicos y Geodestas, San Juan, Argentina, 10-14 de noviembre de 2014. ISBN: 978-987-33-5605-6.
Rivera, J.A., & Arnould, G. (2020). Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmospheric Research, 241, 104953.
Rivera, J. A., Penalba, O. C., Villalba, R., & Araneo, D. C. (2017). Spatio-temporal patterns of the 2010–2015 extreme hydrological drought across the Central Andes, Argentina. Water9,652. doi: https://doi.org/10.3390/w9090652.
Rivera, J.A., Otta S., Lauro, C., & Zazulie, N. (2021). A decade of Hydrological Drought in Central-Western Argentina. Front. Water 3, 640544. doi: https://doi.org/10.3389/frwa.2021.640544.
Rojas, F., & Prieto, M. R. (2020). La variabilidad hídrica en la cuenca del río Atuel, desde la climatología histórica: siglo xviii a mediados del xx. Cuadernos de Geografía: Revista Colombiana de Geografía 29 (2), 326-353.https://doi.org/10.15446/rcdg.v29n2.75960
Rusticucci, M., Zazulie, N., & Raga G.B. (2014). Regional winter climate of the southern central Andes: Assessing the performance of ERA-Interim for climate studies. J. Geophys. Res. Atmos, 119, 8568–8582. doi: https://doi.org/10.1002/2013JD021167.
Seluchi, M.E., Garreaud, R.D., Norte, F.A., & Saulo, A.C. (2006) Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Mon. Wea. Rev., 134:3317–3335.
Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79:61-78.
Vaccarino, E., Otta, S., Lauro, C., Bastidas, L., Vich, A. Sequías hidrológicas en la región de Cuyo, Argentina. Actas E-ICES 15. Virtual. Octubre 2020.
Viale, M., Bianchi, E., Cara, L., Ruiz, L.E., Villalba, R., Pitte, P., Masiokas, M., Rivera, J.A., & Zalazar, L. (2019). Contrasting climates at both sides of the Andes in Argentina and Chile. Front. Environ. Sci. 7, 69. https://doi.org/10.3389/fenvs.2019.00069.
Westmacott, J., & Burn, D. (1997). Climate Change Effects on the Hydrologic Regime within the Curchill Nelson River Basin. Journal of Hydrology, 202, 263-279.
Yue S., & Wang, C.Y. (2002) The influence of serial correlation on the Mann-Whitney test for detecting a shift in median. Advances in Water Resources. 25, 325–333.
Zazulie, N., Rusticucci, M., Raga, G.B. (2017). Regional climate of the subtropical central Andes using highresolution CMIP5 models—part I: Past performance (1980–2005). Clim. Dyn., 49, 3937–3957.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.