Feeding strategies for Holando Argentino steers aimed at different markets
DOI:
https://doi.org/10.48162/rev.39.157Palabras clave:
razas lecheras, novillos en pastoreo, suplementación en pastoreo, alimentación a corral, resistencia al corte, grasa intramuscular, color de la carne, color de la grasaResumen
The objective was to evaluate the performance and meat quality of Holando Argentino (HA) steers under different feeding strategies. One hundred twenty-eight HA steers (181.4 ± 25.5 kg of live weight [LW]) were allocated to four treatments: FL: feedlot finishing during 98 days; Gr1.25: grazing with 1.25% LW/day maize grain supplementation during 235 days; Gr0.70: grazing with 0.70% LW/day maize grain supplementation during 331 days; and GrFL: 287 days grazing background and 116 days feedlot finishing. Average daily gains (ADG) were 1.14, 1.02, 0.82, and 0.81 kg/day for FL, Gr1.25, Gr0.70, and GrFL, respectively (p<0.01). Adjusted productivity ranged between 710 and 741 kg LW/ha (p>0.05). GrFL and Gr0.70 presented the highest carcass weight (CW; 288.3 ± 5.0 and 267.8 ± 12.2 kg, respectively, p<0.001). Gr0.70 presented the lowest longissimus thoracis (LT) L* (p<0.01) and the highest a* (p<0.05). Intramuscular fat was the highest for GrFL (4.86 ± 0.93%, p<0.05). In all strategies, LT shear force presented values of tender meat (29.9 ± 3.4 N, p=0.60). HA steers have the flexibility to produce tender meat under different, high-productivity strategies.
Highlights:
- Holando Argentino steers produced tender meat under contrasting feeding strategies with high productivity.
- Intramuscular fat content was mainly determined by total grain intake.
- Grains can be used at different phases to manage live weight gains, as well as subcutaneous and intramuscular fat endpoints.
- Average daily gains, fat thickness, and carcass weight influenced meat color.
Descargas
Citas
AMSA. 2012. Meat color measurement guidelines. Champaign, Illinois USA. American Meat Science Association.
Beretta, V.; Simeone, A.; Elizalde, J. C.; Baldi, F. 2006. Performance of growing cattle grazing moderate quality legume-grass temperate pastures when offered varying forage allowance with or without grain supplementation. Australian Journal of Experimental Agriculture. 46(7): 793-797. https://doi.org/10.1071/EA05331
Bown, M. D.; Muir, P. D.; Thomson, B. C. 2016. Dairy and beef breed effects on beef yield beef quality and profitability: a review. New Zealand Journal of Agricultural Research. 59(2): 174-184. https://doi.org/10.1080/00288233.2016.1144621
Bruns, K. W.; Pritchard, R. H.; Boggs, D. L. 2004. The relationships among body weight, body composition, and intramuscular fat content in steers. Journal of Animal Science. 82: 1315-1322. https://doi.org/10.2527/2004.8251315x
Coria, M. S.; Reineri, P. S.; Pighin, D.; Barrionuevo, M. G.; Carranza, P. G.; Grigioni, G.; Palma, G. A. 2020. Feeding strategies alter gene expression of the calpain system and meat quality in the longissimus muscle of Braford steers. Asian-Australasian Journal of Animal Sciences. 33(5): 753-762. https://doi.org/10.5713/ajas.19.0163
Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; Gonzalez, L.; Tablada, M.; Robledo, C. W. 2020. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA. Universidad Nacional de Córdoba. Argentina. http://www.infostat.com.ar
Dolezal, H. G.; Smith, G. C.; Savell, J. W.; Carpenter, Z. L. 1982. Comparison of subcutaneous fat thickness, marbling and quality grade for predicting palatability of beef. Journal of Food Science. 47: 397-401. https://doi.org/10.1111/j.1365-2621.1982.tb10089.x
Duckett, S. K.; Wagner, D. G.; Yates, L. D.; Dolezal, H. G.; May, S. G. 1993. Effect of time on feed on beef nutrient composition. Journal of Animal Science. 71: 2079-2088. https://doi.org/10.2527/1993.7182079x
Dunne, P. G.; Monahan, F. J.; O´Mara, F. P.; Moloney, A. P. 2009. Colour of bovine subcutaneous adipose tissue: A review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history. Meat Science. 81: 28-45. https://doi.org/10.1016/j.meatsci.2008.06.013
Garcia, P. T.; Pensel, N. A.; Sancho, A. M.; Latimori, N. J.; Kloster, A. M.; Amigone, M. A.; Casal, J. J. 2008. Beef lipids in relation to animal breed and nutrition in Argentina. Meat Science. 79: 500-508. https://doi.org/10.1016/j.meatsci.2007.10.019
Holman, B. W. B.; Van de Ven, J. R.; Mao, Y.; Coombs, C. E. O.; Hopkins, D. L. 2017. Using instrumental (CIE and reflectance) measures to predict consumers’ acceptance of beef colour. Meat Science. 127: 57-62. http://dx.doi.org/10.1016/j.meatsci.2017.01.005
Horneck, W. H.; Miller, R. O. 1998. Determination of total nitrogen in plant tissue. In: Kalra, Y. P. (Ed.) Handbook of reference methods for plant analysis. Soil and Plant Analysis Council. Inc. CRC Press. 75-83.
Hughes, J.; Clarke, F.; Purslow, P.; Warner, R. 2017. High pH in beef longissimus thoracis reduces muscle fibre transverse shrinkage and light scattering which contributes to the dark colour. Food Research International. 101: 228-238. http://dx.doi.org/10.1016/j.foodres.2017.09.003
INTA-SEAG Córdoba. 1978. Carta de suelos de la República Argentina. Hoja 3363-17 Marcos Juárez. Buenos Aires. 96p.
Ioele, J. P.; Videla Mensegue, H.; Salafia, A.; Genero, M.; Segura, L.; Galarza, C.; Masino, A.; Chiacchiera, S.; Pietrantonio, J.; Alladio, M.; Anselmi, H.; Feresín, P.; Pagnan, F.; Canale, A.; Salomon, A.; Muñoz, S.; Alberione, E.; Conde, B.; Gerster, G. 2021. Red de evaluación de híbridos de maíz de fecha de siembra temprana del Centro Sur de Córdoba. Campaña 2020-21. INTA EEA Marcos Juárez, Informe técnico. https://inta.gob.ar/documentos/red-de-evaluacion-de-hibridos-de-maiz-de-fecha-de-siembra-tempranadel-centro-sur-de-cordoba-campana-2020-21
Kloster, A. M.; Latimori, N. J.; Amigone, M. A.; Garis, M. H.; Chiacchiera, S.; Bertram, N. 2010. Invernada intensiva de biotipos británicos y cruzas continentales sobre pasturas de alfalfa y gramíneas. INTA EEA Marcos Juárez. Informe de Investigación N° 6. 17p.
Kloster, A. M.; Latimori, N. J.; Zurbriggen, G. A.; Garis, M. H. 2017. Comparación de dos alternativas de invernada intensiva. Información para extensión en línea, EEA Marcos Juárez, 25. http://hdl.handle.net/20.500.12123/12280
Lancaster, P. A.; Krehbiel, C. R.; Horn, G. W. 2014. A meta-analysis of effects of nutrition and management during the stocker and backgrounding phase on subsequent finishing performance and carcass characteristics. The Professional Animal Scientist. 30: 602-612. https://doi.org/10.15232/pas.2014-01330
Latimori, N. J.; Kloster, A. M.; Amigone, M. A. 2000. Invernada corta de novillos Holando Argentino en sistemas pastoriles de alta productividad. EEA INTA Marcos Juárez. Informe técnico. 127: 8p.
Latimori, N. J.; Kloster, A. M.; García, P. T.; Carduza, F. J.; Grigioni, G.; Pensel, N. A. 2008. Diet and genotype effects on the quality index of beef produced in the Argentine Pampeana region. Meat Science. 79: 463-469. https://doi.org/10.1016/j.meatsci.2007.10.008
Latimori, N. J.; Kloster, A. M.; Carduza, F.; Vissani, R.; Garis, M. H. 2016. Efectos del plano nutricional durante la recría sobre el desempeño productivo de novillos Holando Argentino. EEA INTA Marcos Juárez. Información para extensión. 147: 9 p.
Maglietti, C.; Pavan, E. 2019. Módulo de invernada intensiva y calidad de producto. En: Pasinato, A.; Grigioni, G.; Alende, M. (Eds.). Producción bovinos para carne: 2013-2017. Sistemas de Producción, Bienestar Animal y Calidad de Producto. Anguil, Ediciones INTA. 103-107.
MAGyP; MEcon. 2014. Ministerio de Agricultura, Ganadería y Pesca; Ministerio de Economía y Finanzas Públicas. Resolución conjunta N° 466/2014 y 361/2014. Buenos Aires, Argentina.
Manni, K.; Rinne, M.; Huhtanen, P. 2013. Comparison of concentrate feeding strategies for growing
dairy bulls. Livestock Science. 152: 21-30. http://dx.doi.org/10.1016/j.livsci.2012.12.006
Manni, K.; Rinne, M.; Huuskonen, A.; Huhtanen, P. 2018. Effects of contrasting concentrate feeding strategies on meat quality of growing and finishing dairy bulls offered grass silage and barley based diets. Meat Science. 143: 184-189. https://doi.org/10.1016/j.meatsci.2018.04.033
Mcleod, M. N.; Minson, D. J. 1976. The analytical and biological accuracy of estimating the dry matter digestibility of different legume species. Animal Feed Science and Technology. 1: 61-72. https://doi.org/10.1016/0377-8401(76)90008-0
Melucci, L. M.; Panarace, M.; Feula, P.;Villarreal, E. L.; Grigioni, G.; Carduza, F.; Soria, L. A.; Mezzadra, C. A.;
Arceo, M. E.; Papaleo Mazzucco, J.; Corva, P. M.; Irurueta, M.; Rogberg-Muñoz, A.; Miquel, M. C. 2012. Genetic and management factors affecting beef quality in grazing Hereford steers. Meat Science. 92: 768-774. https://doi.org/10.1016/j.meatsci.2012.06.036
Merayo, M.; Pighin, D.; Cunzolo, S.; Veggetti, M.; Soteras, T.; Chamorro, V.; Pazos, A.; Grigioni, G. 2023. Meat quality traits in beef from heifers: Effect of including distiller grains in finishing pasture-baseddiets. Agriculture. 13:1977. https://doi.org/10.3390/agriculture13101977
Miller, M. F.; Carr, M. A.; Ramsey, C. B.; Crockett, K. L.; Hoover, L. C. 2001. Consumer thresholds for establishing the value of beef tenderness. Journal of Animal Science. 79: 3062-3068. https://doi.org/10.2527/2001.79123062x
Morales Gómez, J. F.; Antonelo, D. S.; Beline, M.; Pavan, B.; Bambil, D. B.; Fantinato Neto, P.; Saran Netto, A.; Leme, P. R.; Goulart, R. S.; Gerrard, D. E.; Silva, S. L. 2022. Feeding strategies impact animal growth and beef color and tenderness. Meat Science. 183: 108599. https://doi.org/10.1016/j.meatsci.2021.108599
NRC. 1996. Nutrient Requirements of Beef Cattle. National Academy Press: Washington DC.
O’Quinn, T. G.; Legako, J. F.; Brooks, J. C.; Miller, M. F. 2018. Evaluation of the contribution of tenderness, juiciness, and flavour to the overall consumer beef eating experience. Translational Animal Science. 2: 26-36. https://doi.org/10.1093/tas/txx008
Page, J. K.; Wulf, D. M.; Schwotzer, T. R. 2001. A survey of beef muscle color and pH. Journal of Animal Science. 79: 678-687. https://doi.org/10.2527/2001.793678x
Pethick, D. W.; Harper, G. S.; Oddy, V. H. 2004. Growth, development and nutritional manipulation of marblingin cattle: a review. Australian Journal of Experimental Agriculture. 44(7):705-715.
https://doi.org/10.1071/EA02165
Platter, W. J.; Tatum, J. D.; Belk, K. E.; Chapman, P. L.; Scanga, J. A.; Smith, G. C. 2003. Relationships of consumer sensory ratings, marbling score, and shear force value to consumer acceptance of beef strip loin steaks. Journal of Animal Science. 81: 2741-2750. https://doi.org/10.2527/2003.81112741x
Savell, J. W.; Mueller, S. L.; Baird, B. E. 2005. The chilling of carcasses. Meat Science. 70: 449-459. https://doi.org/10.1016/j.meatsci.2004.06.027
Slabbert, N.; Campher, J. P.; Shelby, T.; Leeuw, K. J.; Kühn, G. P. 1992. The influence of dietary energy concentration and feed intake level on feedlot steers 3. Carcass composition and tissue growth as influenced by rate of gain. South African Journal of Animal Sciences. 22(4): 115-121.
Testa, M. L. 2017. Efecto de la dieta con alto contenido de almidón al inicio de recría o en terminación sobre descriptores de la grasa subcutánea e intramuscular. Tesis de Maestría en Producción Animal. Facultad de Ciencias Agrarias. Universidad Nacional de Mar del Plata. Balcarce. Argentina. 43 p.
Testa, M. L.; Grigioni, G.; Panea, B.; Pavan, E. 2021. Color and marbling as predictors of meat quality perception of Argentinian consumers. Foods. 10: 1465. https://doi.org/10.3390/foods10071465
Thompson, J. M. 2004. The effects of marbling on flavour and juiciness scores of cooked beef, after adjusting to a constant tenderness. Australian Journal of Experimental Agriculture. 44: 645-652. https://doi.org/10.1071/EA02171
Van Soest, P. J.; Robertson, J. B.; Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Volpi Lagreca, G.; Gelid, L. F.; Alende, M.; Bressan, E. R.; Pordomingo, A. B.; Pordomingo, A. J. 2021. Effect of placement weight and days on feed on feedlot cattle performance and carcass traits. Livestock Science. 244: 104392. https://doi.org/10.1016/j.livsci.2020.104392
Zurbriggen, G. A.; Maglietti, C. S.; Pouzo, L. B.; Testa, M. L.; Riffel, S.; Elizalde, J. C.; Pavan, E. 2022. Extending the feeding period beyond 8.0 mm of subcutaneous fat reduces feed efficiency without improving meat colour and tenderness of non-implanted feedlot steers. Journal of Animal and Feed Sciences. 31(4): 360-370. https://doi.org/10.22358/jafs/151153/2022

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista de la Facultad de Ciencias Agrarias UNCuyo

Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan las Políticas Editoriales.