Artificial Intelligence in the Social Sciences

Approach from Sentiment Analysis

Authors

DOI:

https://doi.org/10.48162/rev.48.097

Keywords:

Artificial intelligence, Sentiment Analysis, Social Sciences, Vector Support Machines

Abstract

Artificial Intelligence (AI) has developed as a fundamental ally in the Social Sciences, transforming their practice. This article alludes to the importance of AI in the Social Sciences and is exemplified by the task of researching digitized discourses. Sentiment analysis is presented, which can be carried out with written discourses and/or visual discourses on social networks. One of the most characteristic mathematical models of sentiment analysis is addressed: support vector machines (SVM), and an algorithm is programmed in Python to interpret a short text using an SVM. The main objective of the work is to be an easy reference resource for scientists interested in the use of AI as a methodological tool in the Social Sciences.

Author Biography

Antonio Aguilera, El Colegio de San Luis

Doctor en Ciencias Aplicadas por la Universidad Autónoma de San Luis Potosí. Es Investigador Titular B, adscrito al programa de Estudios Políticos e Internacionales de El Colegio de San Luis y es Investigador Nacional con nivel de Candidato del Sistema Nacional de Investigadoras e Investigadores de el CONHCYT, México.

References

Bahit. E. (2012). Curso: Python para principiantes. https://archive.org/details/2012CursoPythonParaPrincipiantes

Chen, X. y He, K. (2020) Exploring Simple Siamese Representation Learning. https://arxiv.org/pdf/2011.10566.pdf

Cheng, J. Dong, L., Lapata, M. (2016) Long Short-Term Memory-Networks for Machine Reading. https://arxiv.org/pdf/1601.06733.pdf

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014) Generative Adversarial Networks. https://arxiv.org/pdf/1406.2661.pdf

Gugerty, L. (2006). Newell and Simon’s Logic Theorist: Historical Background and Impact on Cognitive Modeling. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(9), pp. 880-884. https://doi.org/10.1177/154193120605000904

Guenther, N. y Schonlau, M. (2016) Support vector machines. The Stata Journal 16, Number 4, pp. 917–937.

Gurney, K. (2007). Neural Networks for Perceptual Processing: From Simulation Tools to Theories. Philosophical Transactions: Biological Sciences, 362(1479), pp. 339–353. http://www.jstor.org/stable/20209847

Kaplan, J. (2017) Inteligencia Artificial: Lo que todo el mundo debe saber. España: Teell Editorial.

Kress, G. y van Leeuwen, T. (2021) Reading Imagens: The grammar of visual design. New York: Routledge.

Michelucci, U. (2022) An Introduction to Autoencoders. https://arxiv.org/pdf/2201.03898.pdf

Moguerza, J. M., y Muñoz, A. (2006). Support Vector Machines with Applications. Statistical Science, 21(3), pp. 322–336. http://www.jstor.org/stable/27645765

O'Shea, K. y Nash, R. (2015) An Introduction to Convolutional Neural Networks. https://arxiv.org/pdf/1511.08458.pdf

Schmidt, R.M. (2019) Recurrent Neural Networks (RNNs): A gentle Introduction and Overview. https://arxiv.org/pdf/1912.05911.pdf

Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R. (2015) End-To-End Memory Networks. https://arxiv.org/pdf/1503.08895.pdf

Turner, R.E. (2023) An Introduction to Transformers. https://arxiv.org/pdf/2304.10557.pdf

Vorobioff, J., Cerrotta, S. Morel, N.E. y Amadio, A. (2022) Inteligencia Artificial y Redes Neuronales: Fundamentos, Ejercicios y Aplicaciones con Python y Matlab. Buenos Aires: Editorial de la Universidad Tecnológica Nacional.

Wightman, R., Touvron, H., Jégou, H. (2021) ResNet strikes back: An improved training procedure in timm. https://arxiv.org/pdf/2110.00476.pdf

Published

26-08-2025

How to Cite

Aguilera, A. (2025). Artificial Intelligence in the Social Sciences: Approach from Sentiment Analysis. studios ociales Contemporáneos, (33), 1–27. https://doi.org/10.48162/rev.48.097

Issue

Section

Artículos libres