Variations of Atmospheric Emissions in the Biomass Burning of Tree Species as an Environmental Indicator
DOI:
https://doi.org/10.48162/rev.39.172Palabras clave:
Dióxido de carbono, partículas finas , temperatura de incineración, límites permisiblesResumen

Biomass burning (BB) serves as both an energy source and an environmental indicator. This study examined how CO₂ and fine particle emissions vary during the combustion of biomass from three tree species to determine their contribution to environmental pollution. Leave and stem samples were taken from A. farnesiana (huizache) tree, S. molle (pirul), and P. laevigata (mesquite). The dry biomass was thermally processed in a muffle furnace at temperatures ranging from 50°C to 450°C. Emissions of CO₂, particles smaller than 2.5 microns (PM2.5), particles smaller than 10 microns (PM10), and total volatile organic compounds (TVOC) were measured. The highest emission levels occurred during the pyrolysis process between 250°C and 450°C in both leaves and stems. Among the leaves, the highest emissions of PM2.5 and PM10 were found in huizache, while the highest values were found in mesquite stems. In terms of leaves, mesquite had the highest CO₂ emissions, followed by huizache and pirul. Regarding the stems, pirul had the highest atmospheric emissions of CO₂, followed by huizache and mesquite. In all cases, emission levels exceeded the limits established by Mexican and international environmental regulations, indicating a significant risk to the environment and public health.
Highlights:
- Biomass burning (BB) is the combustion of plant materials, which are widely used for energy production
- This study experimentally verified the environmental impacts of biomass burning for three tree species under a laboratory pyrolysis process.
- The highest PM5 and PM10 emissions occurred in A. farnesiana leaves and in P. laevigata stems.
- The order of highest CO₂ emissions in leaves was laevigata > A. farnesiana > S. molle; in stems, it was S. molle > A. farnesiana > P. laevigata.
- Further comparisons across biomass burning sources and processes should strengthen evaluations of environmental impact considering air pollution.
Descargas
Citas
Aguiar, S.; Enríquez Estrella, M.; Uvidia Cabadiana H. 2022. Residuos agroindustriales: su impacto, manejo y aprovechamiento. AXIOMA. 1(27): 5-11. https://doi.org/10.26621/ra.v1i27.803
Air Quality Expert Group. 2017. The Potential Air Quality Impacts from Biomass Combustion. https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1708081027_170807_AQEG_Biomass_report.pdf%20
Alcalá Jáuregui, J.; García Arreola, M. E.; Rodríguez Ortiz, J. C.; Beltrán Morales, F. A.; Villaseñor Zuñiga, M. E.; Rodríguez Fuentes, H.; Hernández Montoya, A. 2013. Vegetación bioindicadora de metales pesados en un sistema semiárido. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 45(1): 27-42.
Alcalá Jáuregui, J.; Rodríguez Ortíz, J. C.; Hernández Montoya, A.; Filippini, M. F.; Martínez Carretero, E.; Diaz Flores, P. E. 2018a. Capacity of two vegetative species of heavy metal accumulation. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 50(1): 123-139.
Alcalá Jáuregui, J.; Rodríguez Ortiz, J. C.; Hernández Montoya, A.; Filippini, M. F.; Martínez Carretero, E.; Díaz Flores, P. E.; Rojas Velázquez, A. N.; Rodríguez-Fuentes, H.; Beltrán Morales, F. A. 2018b. Heavy metals in atmospheric dust deposited in leaves of Acacia farnesiana (Fabaceae) and Prosopis laevigata (Fabaceae). Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 50(2): 173-185.
Alcalá Jáuregui, J.; Rodríguez Ortiz, J. C.; Filippini, M. F.; Martínez Carretero, E.; Hernández Montoya, A.; Rojas Velázquez, Á. N.; Méndez Cortés, H.; Beltrán Morales, Felix A. 2022. Metallic elements in foliar material and fruits of three tree species as bioindicators. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza. Argentina. 54(2): 61-72. https://doi.org/10.48162/rev.39.083
Alcalá Jáuregui, J. A.; Ochoa Arriaga, A.; Martínez Carretero, E.; Navas Romero, A.; Ontivero, M.; Filippini, M. F.; Rojas Velázquez, A. N.; Guillén Castillo, O. I.; Lara Izaguirre, A. Y.; Duplancic, A.; Villegas Rodríguez, F. 2024. Evaluación de emisiones de CO2 y partículas finas en la incineración de biomasa de calabacita (Cucurbita pepo L.-Cucurbitaceae). Multequina 33: 105-120. http://id.caicyt.gov.ar/ark:/s18527329/wviayjl94
Ali, F., Dawood, A.; Hussain, A.; Alnasir, M. H.; Khan, M. A.; Butt, T. M.; Janjua, N. K.; Hamid, A. (2024). Fueling the future: biomass applications for green and sustainable energy. Discover Sustainability. https://doi.org/10.1007/s43621-024-00309-z
Almsatar, T. 2020. Environmental Issues of Biomass-Burning in Sub-Saharan African Countries. In: Mammino, L. (eds). Biomass Burning in Sub-Saharan Africa. Springer. https:// doi.org/10.1007/978-94-007-0808-2_1
Amodio, M.; Andriani, E.; Dambruoso, P.; Daresta, B.; de Gennaro, G.; Gilio, A.; 2012. Impact of biomass burning on PM10 concentrations. Fresenius Environ. Bull. 21: 3296-3300.
Anand, P.; Mina, U.; Khare, M.; Kumar, P.; Kota, S. H. 2022. Air pollution and plant health response-current status and future directions. Atmospheric Pollution Research. 13(6): 101508. DOI: 10.1016/j.apr.2022.101508
Arteaga, J.; Arenas, E.; López, D.; Sanchéz, C.; Zapata, Z. 2012. De la pirólisis rápida de residuos de palma africana (Elaeis guineensis Jacq). Biotecnología en el Sector Agropecuario y Agroindustrial. 10(2): 144-151. http://www.scielo.org.co/pdf/bsaa/v10n2/ v10n2a17.pdf
Arteaga-Pérez, L. E.; Segura, C.; Santana, K. D. 2016. Procesos de torrefacción para valorización de residuos lignocelulósicos. Análisis de posibles tecnologías de aplicación en Sudamérica. Afinidad. 73(573).
Baray, M. del R. 2016. Pirólisis a abaja temperatura en materiales avanzados de la pomasa de manzana para la producción de biocombustibles. Centro de Investigación en Materiales Avanzados. https://cimav.repositorioinstitucional.mx/jspui/handle/1004/363
Basu, P.; Sadhukhan, A. K.; Gupta, P.; Rao, S.; Dhungana, A.; Acharya, B. 2014. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresource technology. 159: 215-222.
Bergman, P. C. 2005. Combined torrefaction and pelletisation. The TOP process. ECN-C-05-073.
Buis, A. 2019. The Atmosphere: Getting a Handle on Carbon Dioxide-Climate Change: Vital Signs of the Planet. Retrieved December 6, 2020. https:// climate.nasa.gov/news/2915/ the-atmospheregetting-a-handle-on-carbon-dioxide/
Bustamante García, V.; Carrillo Parra, A.; Prieto Ruíz, J. A.; Corral-Rivas, J. J.; Hernández Díaz, J. C. 2016. Química de la biomasa vegetal y su efecto en el rendimiento durante la torrefacción: Revisión. Revista mexicana de Ciencias Forestales. 7(38): 5-23. http://www.scielo.org.mx/ scielo.php?script=sci_arttext&pid=S2007-11322016000600005&lng=es&tlng=es.
Chang, D.; Li, Q.; Wang, Z.; Dai, J.; Fu, X.; Guo, J.; Zhu, L.; Pu, D.; Cuevas, C. A.; Fernandez, R. P.; Wang, W.; Ge, M.; Fung, J. C. H.; Lau, A. K. H.; Granier, C.; Brasseur, G.; Pozzer, A.; Saiz-Lopez, A.; Song, Y.; Wang, T. 2024. Significant chlorine emissions from biomass burning affect the long-term atmospheric chemistry in Asia. National Science Review. 11(9): nwae285. https://doi. org/10.1093/nsr/nwae28520
Chekchaki, S.; Zaafour, M. D.; Chekchaki, N. 2025. Acacia farnesiana (L.) Willd: Ecology, uses and phytochemical composition. African Journal of Biological Sciences. 7(4): 547-566. https:// doi.org/10.48047/AFJBS.7.4.2025.547-566
Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M. S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; Guo, H.; Fu, H.; Miljevic, B.; Morawska, L.; Thai, P.; LAM, Y. F.; Pereira, G.; Ding, A.; Huang, X.; Dumka, U. C. 2017. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment. 579: 1000-1034. https://doi. org/10.1016/j.scitotenv.2016.11.025
Chuetor, S.; Panakkal, E. J.; Ruensodsai, T.; Cheenkachorn, K.; Kirdponpattara, S.; Cheng, Y. S.; Sriariyanun, M. 2022. Improvement of Enzymatic Saccharification and Ethanol Production from Rice Straw Using Recycled Ionic Liquid: The Effect of Anti-Solvent Mixture. Bioengineering. 9(3): 115. https://doi.org/10.3390/bioengineering9030115
Cruz Montelongo, C.; Herrera Gamboa, J.; Ortiz Sánchez, I.; Ríos Saucedo, J. C.; Rosales Serna, R.; Carrillo-Parra, A. 2020. Caracterización energética del carbón vegetal producido en el Norte-Centro de México. Madera y bosques. 26(2): e2621971. https://doi.org/10.21829/ myb.2020.2621971
Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Progress in energyand combustion science. 30(2): 219-230.
Diario Oficial de la Federación. 2021. NORMA Oficial Mexicana NOM-021-SSA1-2021. Salud ambiental. Valores límite permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire, ambiente y criterios para su evaluación. https://rama.edomex. gob.mx/sites/rama.edomex.gob.mx/files/files/NOM-025-SSA1-2021.pdf%20
Dula, M.; Kraszkiewicz, A. 2025. Theory and Practice of Burning Solid Biofuels in Low-Power Heating Devices. Energies. 18(1): 182. https://doi.org/10.3390/en18010182
Ezzati, M.; Kammen, D. M. 2002. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: Comprehension, gaps, and data needs. Environ Health Perspect. 110(11): 1057-68. https://doi.org/10.1289/ehp.021101057
Fan, H.; Zhao, C.; Yang, Y.; Yang, X. 2021. Spatio-Temporal Variations of the PM2.5/PM10 Ratios and Its Application to Air Pollution Type Classification in China. Front. Environ. Sci. 9: 692440. DOI: 10.3389/fenvs.2021.692440
García-Azpeitia, L.; Montalvo-González, E.; Loza-Cornejo, S. 2022. Caracterización nutricional y fitoquímica de hojas, flor y fruto de Prosopis laevigata. Botanical Sciences. 100(4): 1014-1024.
Grillo, G.; Tabasso, S.; Cravotto, G.; van Ree, T. 2020. Burning Biomass: Environmental Impact on the Soil. In: Mammino, L. (eds) Biomass Burning in Sub-Saharan Africa. Springer. https://doi.org/10.1007/978-94-007-0808-2_2
Health Efects Institute. 2024. State of Global Air 2024. Special Report.
Hua, C.; Ma, W.; Zheng, F.; Zhang, Y.; Xie, J.; Ma, L.; Song, B.; Yan, C.; Li, H.; Liu, Z.; Liu, Q.; Kulmala, M.; Liu, Y. 2024. Health risks and sources of trace elements and black carbon in PM2.5 from 2019 to 2021 in Beijing. Journal of Environmental Sciences. 142: 69-82. https://doi. org/10.1016/j.jes.2023.05.023
IFC. International Finance Corporation. 2017. Converting Biomass to Energy: A Guide for Developers and Investors.
IQAir. Air Visual. 2018. 2018 World Air Quality Report. Region & City PM2.5 Ranking. Region & City PM2.5 Ranking. https://www.iqair.com/ dl/2018_world-air-quality-report-2018-en.pdf
IQAir. Air Visual. 2023. 2023 World Air Quality. Region and City PM2.5 Ranking. https://www.iqair.com/ dl/2023_World_Air_Quality_Report.pdf%20
Moscoso-Vanegas, D.; Monroy-Morocho, L.; Narváez-Vera, M.; Espinoza-Molina, C.; Astudillo-Alemán, A. 2019. Efecto fitotóxico del metraila particulado PM10 recolectado en el área urbana de la Ciudad de Cuenca, Ecuador. Iteckne. 16(1): 12-20. https://doi.org/10.15332/iteckne.v16i1.2157
Muhd, P. S. D.; Cuelho, C. H. F.; Brondani, J. C.; Manfron, M. P. 2015. Chemical composition of the Schinus molle L. essential oil and their biological activities. Revista Cubana de Farmacia. 49(1): 132-143.
Naciones Unidas. 2018. La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. LC/G.2681-P/Rev.3.
Nhuchhen, D. R.; Basu, P.; Acharya, B. 2014. A comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels. 1-56.
Organización Mundial de la Salud. 2021. Directrices mundiales de la OMS sobre la calidad del aire: materia particulada (MP2.5 y MP10), ozono, dióxido de nitrógeno, dióxido de azufre y monóxido de carbono: resumen ejecutivo. Organización Mundial de la Salud. https://iris.who.int/handle/10665/346062.
Pinakana, S. D.; Raysoni, A. U.; Sayeed, A.; Gonzalez, J. L.; Temby, O.; Wladyka, D.; Sepielak, K.; Gupta, P. 2024. Review of Agricultural Biomass Burning and its Impact on Air Quality in the Continental United States of America. Environmental Advances. Vol.: 16. https://doi.org/10.1016/j.envadv.2024.100546
Pintor-Ibarra, L. F.; Alvarado-Flores, J. J.; Rutiaga-Quiñones, J. G.; Alcaraz-Vera, J. V.; Ávalos-Rodríguez, M. L.; Moreno-Anguiano, O. 2024. Chemical and Energetic Characterization of the Wood of Prosopis laevigata: Chemical and Thermogravimetric Methods. Molecules. 29(11): 2587. https://doi.org/10.3390/molecules29112587
Reinhardt, T. E.; Ottmar, R. D.; Castilla, C. 2001. Smoke impacts from agricultural burning in a rural Brazilian town. Journal of the Air & Waste Management Association (1995). 51(3): 443-450. https://doi.org/10.1080/10473289.2001.10464280
Sadaka, S.; Johnson, D. M. 2011. Biomass Combustion. Cooperative Extension Service. University of Arkansas. US Department of Agriculture and county governments cooperating. FSA1056.
Saleem M. 2022. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon. 8(2): e08905. https://doi.org/10.1016/j.heliyon.2022.e08905
Sangaré, D.; Belandria, V.; Bostyn, S.; Moscosa-Santillan, M.; Gökalp, I. 2024. Pyro-gasification of lignocellulosic biomass: online quantification of gas evolution with temperature, effects of heating rate, and stoichiometric ratio. Biomass Conversion and Biorefinery. 14(8): 9763-9775.
Secretaría de Medio Ambiente y Recursos Naturales. 2016. Estrategia Nacional de Calidad del Aire. ENCA. https://www.gob.mx/cms/uploads/attachment/file/195809/Estrategia_ Nacional_Calidad_del_Aire.pdf%20
Sivertsen, B. 2006. Air pollution impacts from open air burning. WIT Transactions on Ecology and the Environment. 92.
Subils, M. J. B.; Domínguez, F. B. 2000. NTP 549: El dióxido de carbono en la evaluación de la calidad del aire interior. España: Centro Nacional de Condiciones de Trabajo. 124p.
Suriyawong, P.; Chuetor, S.; Samae, H.; Piriyakarnsakul, S.; Amin, M.; Furuuchi, M.; Hata, M.; Inerb, M.; Phairuang, W. 2023. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon. 9(3): e14261. https://doi.org/10.1016/j.heliyon.2023.e14261
Torres-Duque, C.; Maldonado, D.; Pérez-Padilla, R.; Ezzati, M.; Viegi, G. 2008. Forum of International Respiratory Studies (FIRS) Task Force on Health Effects of Biomass Exposure. Biomass fuels and respiratory diseases: A review of the evidence. Proceedings of the American Thoracic Society. 5(5): 577-590. https://doi.org/10.1513/pats.200707-100RP
Tripathi, S.; Yadav, S.; Sharma, K. 2024. Air pollution from biomass burning in India. Environ Res Lett. 19:073007. https://doi.org/10.1088/1748-9326/ad4a90
Valencia, G. M.; Anaya, J. A.; Caro-Lopera, F. J. 2022. Bottom-up estimates of atmospheric emissions of CO2, NO2, CO, NH3, and Black Carbon, generated by biomass burning in the north of South America. Revista de Teledetección. 59: 23-47. https://doi.org/10.4995/raet.2021.15594
Wardoyo, A. Y.; Morawska, L.; Ristovski, Z. D.; Marsh, J. 2006. Quantifcation of particle number and mass emission factors from combustion of Queensland trees. Environ. Sci. Technol. 40(18): 5696-5703.
WHO. 2023. Who Ambient Air Quality Database, 2022 update: status report. https://www.who.int/publications/i/item/9789240047693
WHO. 2024. Ambient (outdoor) air pollution. https://www.who.int/ news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health%20//%20
Wu, Y.; Han, Y.; Voulgarakis, A.; Wang, T.; Li, M.; Wang, Y.; Xie, M.; Zhuang, B.; Li, S. 2017. An agricultural biomass burning episode in eastern China: Transport, optical properties, and impacts on regional air quality, J. Geophys. Res. Atmos. 122: 2304-2324. DOI: 10.1002/2016JD025319
Zauli-Sajani, S.; Thunis, P.; Pisoni, E.; Bessagnet, B.; Monforti-Ferrario, F.; De Meij, A.; Pekar, F.; Vignati, E. 2024. Reducing biomass burning is key to decrease PM2.5 exposure in European cities. Scientific reports. 14(1): 10210. https://doi.org/10.1038/s41598-024-60946-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista de la Facultad de Ciencias Agrarias UNCuyo

Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan las Políticas Editoriales.








.jpg)



