Impact of Ozone-Based Postharvest Treatment on the Quality and Shelf Life of Radish (Raphanus sativus L.) Microgreens

Authors

  • Florencia Pía Alloggia Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Laboratorio de Cromatografía para Agroalimentos. Instituto de Biología Agrícola de Mendoza. CONICET Mendoza. Almirante Brown 500. Chacras de Coria. M5528AHB. Mendoza. Argentina https://orcid.org/0009-0009-0844-6692
  • Roberto Felipe Bafumo Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Laboratorio de Cromatografía para Agroalimentos. Instituto de Biología Agrícola de Mendoza. CONICET Mendoza. Almirante Brown 500. Chacras de Coria. M5528AHB. Mendoza. Argentina https://orcid.org/0009-0001-7085-0727
  • Daniela Andrea Ramírez Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Laboratorio de Cromatografía para Agroalimentos. Instituto de Biología Agrícola de Mendoza. CONICET Mendoza. Almirante Brown 500. Chacras de Coria. M5528AHB. Mendoza. Argentina https://orcid.org/0000-0002-8581-6644
  • Marcos Andrés Maza Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Laboratorio de Cromatografía para Agroalimentos. Instituto de Biología Agrícola de Mendoza. CONICET Mendoza. Almirante Brown 500. Chacras de Coria. M5528AHB. Mendoza. Argentina https://orcid.org/0000-0002-2523-8029
  • Alejandra Beatriz Camargo Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Laboratorio de Cromatografía para Agroalimentos. Instituto de Biología Agrícola de Mendoza. CONICET Mendoza. Almirante Brown 500. Chacras de Coria. M5528AHB. Mendoza. Argentina https://orcid.org/0000-0001-9749-8842

DOI:

https://doi.org/10.48162/rev.39.183

Keywords:

micro-scale vegetables, Raphanus sativus, ozonated water, sanitization, storage

Abstract

 

Microgreens are young vegetable seedlings that have garnered significant attention due to their high concentrations of health-promoting phytochemicals. However, their highly perishable nature presents a significant challenge for postharvest storage. Among the various preservation technologies available, ozone treatment applied to microgreens-an innovative and environmentally sustainable method-has not been extensively studied. This study evaluated the effect of ozone-based sanitization on the shelf life and quality of radish microgreens. Conventional washing treatments using chlorinated water and tap water were compared to ozonated water. During refrigerated storage, key quality parameters were systematically monitored, including fresh weight loss, electrolyte leakage, color changes, and microbial counts. Ozonated water effectively reduced the initial aerobic mesophilic bacterial populations, with no statistically significant differences compared to conventional chlorine treatment. Furthermore, ozone treatment had minimal impact on color, and the weight loss remained below 1%. Although tissue wilting was observed, it was significantly less severe than that associated with chlorine treatment. These findings suggest that ozonated water is a promising alternative to conventional postharvest treatments for enhancing the shelf life and microbiological safety of ready-to-eat microgreens.

Highlights:

  • Addressing the issue of limited shelf life of microgreens.
  • Innovative and sustainable ozone technology applied to the postharvest of microgreens.
  • Ozone as an alternative to chlorine for sanitation of ready-to-eat microgreens.
  • Aqueous ozone for initial control of aerobic mesophilic bacteria in microgreens.
  • Minimal weight loss and no color change in ozone-washed microgreens.

Downloads

Download data is not yet available.

References

Ali, A.; Yeoh, W. K.; Forney, C. & Siddiqui, M. W. 2017. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition. 58(15): 2632-2649. https://doi.org/10.1080/10408398.2017.13 39180

Ali, S.; Nawaz, A.; Naz, S.; Ejaz, S.; Hussain, S.; Anwar, R. 2022. Decontamination of Microgreens. In: Shah, M.A., Mir, S.A. (eds) Microbial Decontamination of Food. https://doi. org/10.1007/978-981-19-5114-5_6

Baenas, N.; Gómez-Jodar, I.; Moreno, D. A.; García-Viguera, C. & Periago, P. M. 2017. Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology. 127: 60-67. http://dx.doi.org/10.1016/j.postharvbio.2017.01.010

Botondi, R.; Barone, M. & Grasso, C. 2021. A review into the effectiveness of ozone technology for improving the safety and preserving the quality of fresh-cut fruits and vegetables. Foods. 10(4): 748. https://doi.org/10.3390/foods10040748

Casajús, V.; Perini, M.; Ramos, R.; Lourenco, A. B.; Salinas, C.; Sánchez, E.; Fanello, D.; Civello, P.; Frezza, D. & Martínez, G. 2021. Harvesting at the end of the day extends postharvest life of kale (Brassica oleracea var. sabellica). Scientia Horticulturae. 276: 109757. https://doi. org/10.1016/j.scienta.2020.109757

Chandra, D.; Kim, J. G.; Kim, Y. P. 2012. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Horticulture, Environment, and Biotechnology. 53(1): 32-40. https://doi.org/10.1007/s13580-012-0075-6

Das, B. K.; Kim, J. G. 2010. Microbial quality and safety of fresh-cut broccoli with different sanitizers and contact times. Journal of Microbiology and Biotechnology. 20(2): 363-369. https:// doi.org/10.4014/jmb.0907.07009

Deng, L. Z.; Mujumdar, A. S.; Pan, Z.; Vidyarthi, S. K.; Xu, J.; Zielinska, M. & Xiao, H. W. 2019. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition. 60(15): 2481-2508. https://doi.or g/10.1080/10408398.2019.1649633

Di Rienzo J. A.; Casanoves F.; Balzarini M. G.; Gonzalez, L.; Tablada, M.; Robledo, C. W. InfoStat versión 2020. Centro de Transferencia InfoStat. FCA. Universidad Nacional de Córdoba. Argentina. URL http://www.infostat.com.ar

Ghoora, M. D.; Srividya, N. 2020. Effect of packaging and coating technique on postharvest quality and shelf life of Raphanus sativus L. and Hibiscus sabdariffa L. microgreens. Foods. 9(5): 653. https://doi.org/10.3390/foods9050653

Huyskens-Keil, S.; Hassenberg, K.; Herppich, W. B. 2012. Impact of postharvest UV-C and ozone treatment on textural properties of white asparagus (Asparagus officinalis L.). Journal of Applied Botany and Food Quality. 84(2): 229.

Işık, H.; Topalcengiz, Z.; Güner, S. & Aksoy, A. 2020. Generic and Shiga toxin-producing Escherichia coli (O157:H7) contamination of lettuce and radish microgreens grown in peat moss and perlite. Food Control. 111: 107079. https://doi.org/10.1016/j.foodcont.2019.107079

Kou, L.; Luo, Y.; Yang, T.; Xiao, Z.; Turner, E. R.; Lester, G. E.; Wang, Q. 2013. Postharvest biology, quality and shelf-life of buckwheat microgreens. LWT-Food Science and Technology. 51(1): 73-78. https://doi.org/10.1016/j.lwt.2012.11.017

Kou, L.; Yang, T.; Liu, X.; Luo, Y. 2015. Effects of Pre-and Postharvest Calcium Treatments on Shelf Life and Postharvest Quality of Broccoli Microgreens. HortScience horts. 50(12): 1801-1808. https://doi.org/10.21273/HORTSCI.50.12.1801

Kyriacou, M. C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. 2016. Micro-scale vegetable production and the rise of microgreens. Trends in Food Science & Technology. 57(Part A): 103-115. https://doi.org/10.1016/j.tifs.2016.09.005

Kyriacou, M.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G. A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. 2019. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry. 227: 107-118. https://doi.org/10.1016/j.foodchem.2018.10.098.

Lu, Y.; Dong, W.; Yang, T.; Luo, Y.; Chen, P. 2021. Preharvest UVB application increases glucosinolate contents and enhances postharvest quality of broccoli microgreens. Molecules. 26(11): 3247. https://doi.org/10.3390/molecules26113247

Mersinli, E.; Koyuncu, M. A.; Erbaş, D. 2021. Quality retention of minimally processed spinach using low-dose ozonated water during storage. Turkish Journal of Agriculture and Forestry. 45(2): 133-143. https://doi.org/10.3906/tar-2004-75

Paradiso, V. M.; Castellino, M.; Renna, M.; Gattullo, C. E.; Calasso, M.; Terzano, R.; Allegretta, I.; Leoni, B.; Caponio, F.; Santamaria, P. 2018. Nutritional characterization and shelf-life of packaged microgreens. Food & function. 9(11): 5629-5640. https://doi.org/10.1039/ C8FO01182F

Patil, M.; Sharma, S.; Sridhar, K.; Anurag, R. K.; Grover, K.; Dharni, K.; Mahajan, S.; Sharma, M. 2024. Effect of postharvest treatments and storage temperature on the physiological, nutritional, and shelf-life of broccoli (Brassica oleracea) microgreens. Scientia Horticulturae. 327: 112805. https://doi.org/10.1016/j.scienta.2023.112805

Paulsen, E.; Barrios, S.; Baenas, N.; Moreno, D. A.; Heinzen, H.; Lema, P. 2018. Effect of temperature on glucosinolate content and shelf life of ready-to-eat broccoli florets packaged in passive modified atmosphere. Postharvest Biology and Technology. 138: 125-133. https://doi. org/10.1016/j.postharvbio.2018.01.006

Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. 2021. Ozone treatments for preserving fresh vegetables quality: A critical review. Foods. 10(3): 605. https://doi.org/10.3390/ foods10030605

Turner, E. R.; Luo, Y.; Buchanan, R. L. 2020. Microgreen nutrition, food safety, and shelf life: A review. Journal of food science. 85(4): 870-882. https://doi.org/10.1111/1750- 3841.15049

Wang, H.; Feng, H.; Luo, Y. 2004. Microbial reduction and storage quality of fresh-cut cilantro washed with acidic electrolyzed water and aqueous ozone. Food Research International. 37(10): 949-956. https://doi.org/10.1016/j.foodres.2004.06.004

Wang, J.; Wang, S.; Sun, Y.; Li, C.; Li, Y.; Zhang, Q. & Wu, Z. 2019. Reduction of Escherichia coli O157: H7 and naturally present microbes on fresh-cut lettuce using lactic acid and aqueous ozone. RSC advances. 9(39): 22636-22643. https://doi.org/10.1039/C9RA03544C

Xiao, Z.; Lester, G. E.; Luo, Y.; Xie, Z. K.; Yu, L. L. & Wang, Q. 2014a. Effect of light exposure on sensorial quality, concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage. Food chemistry. 151: 472-479. https://doi. org/10.1016/j.foodchem.2013.11.086

Xiao, Z.; Luo, Y.; Lester, G. E.; Kou, L.; Yang, T.; Wang, Q. 2014b. Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT - Food Science and Technology. 55(2): 551-558. http://doi.org/10.1016/j. lwt.2013.09.009

Yan, H.; Li, W.; Chen, H.; Liao, Q.; Xia, M.; Wu, D.; Liu, C.; Chen, J.; Zou, L.; Peng, L.; Zhao, G.; Zhao, J. 2022. Effects of storage temperature, packaging material and wash treatment on quality and shelf life of Tartary buckwheat microgreens. Foods. 11(22): 3630. https://doi. org/10.3390/foods11223630

Zappia, A.; De Bruno, A.; Torino, R.; Piscopo, A.; Poiana, M. 2018. Influence of light exposure during cold storage of minimally processed vegetables (Valeriana sp.). Journal of Food Quality. 2018(1): 4694793. https://doi.org/10.1155/2018/4694793

Zhang, L.; Lu, Z.; Yu, Z. & Gao, X. 2005. Preservation of fresh-cut celery by treatment of ozonated water. Food control. 16(3): 279-283. https://doi.org/10.1016/j.foodcont.2004.03.007

Downloads

Published

05-12-2025

How to Cite

Alloggia, F. P., Bafumo, R. F., Ramírez, D. A., Maza, M. A., & Camargo, A. B. (2025). Impact of Ozone-Based Postharvest Treatment on the Quality and Shelf Life of Radish (Raphanus sativus L.) Microgreens. evista e a acultad e iencias grarias NCuyo, 57(2), 199–210. https://doi.org/10.48162/rev.39.183

Issue

Section

Agroindustrial technologies

Most read articles by the same author(s)